File size: 7,698 Bytes
650d33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfbf5ec
650d33e
 
76f4bca
650d33e
 
 
 
 
 
 
 
 
bfbf5ec
650d33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c928dff
650d33e
 
 
 
 
 
 
76f4bca
 
 
650d33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c480fd4
650d33e
 
 
 
 
 
9c13db2
650d33e
 
39b1fce
650d33e
 
 
df3d9ce
650d33e
 
 
 
 
 
8e6fa23
650d33e
 
 
 
8e6fa23
 
650d33e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Part of the code in this file is adapted from
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py and
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/train.py

# MIT License

# Copyright (c) 2022 Lorenzo Breschi

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import gradio as gr
import numpy as np
import time
from data import PatchDataModule, prepare_data, image2tensor, tensor2image
import torch
from tqdm import tqdm
from bigdl.nano.pytorch import InferenceOptimizer
from torch.utils.data import DataLoader
from pathlib import Path
from torch.utils.data import Dataset
import datetime
import huggingface_hub


device = 'cpu' 
dtype = torch.float32
MODEL_REPO = 'BigDL/FSPBT'
ckpt_path = huggingface_hub.hf_hub_download(
            MODEL_REPO, 'generator.pt')
generator = torch.load(ckpt_path)
generator.eval()
generator.to(device, dtype)
params = {'batch_size': 1,
          'num_workers': 0}


class ImageDataset(Dataset):
    def __init__(self, img):
        self.imgs = [image2tensor(img)]
    def __getitem__(self, idx: int) -> dict:
        return self.imgs[idx]
    
    def __len__(self) -> int:
        return len(self.imgs)


data_path = Path('data')
train_image_dd = prepare_data(data_path)
dm = PatchDataModule(train_image_dd, patch_size=2**6,
                     batch_size=2**3, patch_num=2**6)

# quantize model
train_loader = dm.train_dataloader()
train_loader_iter = iter(train_loader)
quantized_model = InferenceOptimizer.quantize(generator,
                                              accelerator=None,
                                              calib_dataloader=train_loader)


def original_transfer(input_img):
    w, h, _ = input_img.shape
    print(datetime.datetime.now())
    print("input size: ", w, h)
    # resize too large image
    if w > 3000 or h > 3000:
        ratio = min(3000 / w, 3000 / h)
        w = int(w * ratio)
        h = int(h * ratio)
    if w % 4 != 0 or h % 4 != 0:
        NW = int((w // 4) * 4)
        NH = int((h // 4) * 4)
        input_img = np.resize(input_img,(NW,NH,3))
    st = time.perf_counter()
    dataset = ImageDataset(input_img)
    loader = DataLoader(dataset, **params)
    with torch.no_grad():
        for inputs in tqdm(loader):
            inputs = inputs.to(device, dtype)
            st = time.perf_counter()
            outputs = generator(inputs)
            ori_time = time.perf_counter() - st
            ori_time = "{:.3f}s".format(ori_time)
            ori_image = np.array(tensor2image(outputs[0]))
            del inputs
            del outputs
    return ori_image, ori_time

def nano_transfer(input_img):
    w, h, _ = input_img.shape
    print(datetime.datetime.now())
    print("input size: ", w, h)
    # resize too large image
    if w > 3000 or h > 3000:
        ratio = min(3000 / w, 3000 / h)
        w = int(w * ratio)
        h = int(h * ratio)
    if w % 4 != 0 or h % 4 != 0:
        NW = int((w // 4) * 4)
        NH = int((h // 4) * 4)
        input_img = np.resize(input_img,(NW,NH,3))
    st = time.perf_counter()
    dataset = ImageDataset(input_img)
    loader = DataLoader(dataset, **params)
    with torch.no_grad():
        for inputs in tqdm(loader):
            inputs = inputs.to(device, dtype)
            st = time.perf_counter()
            outputs = quantized_model(inputs)
            nano_time = time.perf_counter() - st
            nano_time = "{:.3f}s".format(nano_time)
            nano_image = np.array(tensor2image(outputs[0]))
            del inputs
            del outputs
    return nano_image, nano_time


def clear():
    return None, None, None, None
    

demo = gr.Blocks()

with demo:
    gr.Markdown("<h1><center>BigDL-Nano Demo</center></h1>")
    with gr.Row().style(equal_height=False):
        with gr.Column():
            gr.Markdown('''
                <h2>Overview</h2>
                
                BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p>
                The video on the right shows how the user can easily accelerate their training and inference (including tracing and quantization) pipelines using BigDL-Nano with just a couple of lines of code; you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details. 
                ''')
        with gr.Column():
            gr.Video(value="data/nano_api_display.mp4")
    gr.Markdown('''
            <h2>Demo</h2>
            
            This section uses an image stylization example to demonstrate the speedup of an inference pipeline using quantization in BigDL-Nano (about 2~3x inference time speedup).
            This inference demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation),
            and the default image is from [the COCO dataset](https://cocodataset.org/#home).
            ''')
    with gr.Row().style(equal_height=False):
        input_img = gr.Image(label="input image", value="data/COCO_image.jpg", source="upload")
        with gr.Column():
            ori_but = gr.Button("Standard PyTorch")
            nano_but = gr.Button("BigDL-Nano")
            clear_but = gr.Button("Clear Output")
    with gr.Row().style(equal_height=False):
        with gr.Column():
            ori_time = gr.Text(label="Standard PyTorch latency")
            ori_image = gr.Image(label="Standard PyTorch output image")
        with gr.Column():
            nano_time = gr.Text(label="BigDL-Nano latency")
            nano_image = gr.Image(label="BigDL-Nano output image")
    
    ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time])
    nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time])
    clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time])
    

demo.launch(share=True, enable_queue=True)