File size: 7,735 Bytes
650d33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# This file is copied from https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/data.py

# MIT License

# Copyright (c) 2022 Lorenzo Breschi

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from typing import Callable, Dict

import torch

from torch.utils.data import Dataset

import torchvision.transforms.functional as F
from torchvision import transforms
import pytorch_lightning as pl

from collections.abc import Iterable


# image reader writer
from pathlib import Path
from PIL import Image
from typing import Tuple


def read_image(filepath: Path, mode: str = None) -> Image:
    with open(filepath, 'rb') as file:
        image = Image.open(file)
        return image.convert(mode)


image2tensor = transforms.ToTensor()
tensor2image = transforms.ToPILImage()


def write_image(image: Image, filepath: Path):
    filepath.parent.mkdir(parents=True, exist_ok=True)
    image.save(str(filepath))


def read_image_tensor(filepath: Path, mode: str = 'RGB') -> torch.Tensor:
    return image2tensor(read_image(filepath, mode))


def write_image_tensor(input: torch.Tensor, filepath: Path):
    write_image(tensor2image(input), filepath)


def get_valid_indices(H: int, W: int, patch_size: int, random_overlap: int = 0):

    vih = torch.arange(random_overlap, H-patch_size -
                       random_overlap+1, patch_size)
    viw = torch.arange(random_overlap, W-patch_size -
                       random_overlap+1, patch_size)
    if random_overlap > 0:
        rih = torch.randint_like(vih, -random_overlap, random_overlap)
        riw = torch.randint_like(viw, -random_overlap, random_overlap)
        vih += rih
        viw += riw
    vi = torch.stack(torch.meshgrid(vih, viw)).view(2, -1).t()
    return vi


def cut_patches(input: torch.Tensor, indices: Tuple[Tuple[int, int]], patch_size: int, padding: int = 0):
    # TODO use slices to get all patches at the same time ?

    patches_l = []
    for n in range(len(indices)):

        patch = F.crop(input, *(indices[n]-padding),
                       *(patch_size+padding*2,)*2)
        patches_l.append(patch)
    patches = torch.cat(patches_l, dim=0)

    return patches


def prepare_data(data_path: Path, read_func: Callable = read_image_tensor) -> Dict:
    """
    Takes a data_path of a folder which contains subfolders with input, target, etc.
    lablelled by the same names.
    :param data_path: Path of the folder containing data
    :param read_func: function that reads data and returns a tensor
    """
    data_dict = {}

    subdir_names = ["target", "input", "mask"]  # ,"helper"

    # checks only files for which there is an target
    # TODO check for images
    name_ls = [file.name for file in (
        data_path / "target").iterdir() if file.is_file()]

    subdirs = [data_path / sdn for sdn in subdir_names]
    for sd in subdirs:
        if sd.is_dir():
            data_ls = []
            files = [sd / name for name in name_ls]
            for file in files:
                tensor = read_func(file)
                H, W = tensor.shape[-2:]
                data_ls.append(tensor)
            # TODO check that all sizes match
            data_dict[sd.name] = torch.stack(data_ls, dim=0)

    data_dict['name'] = name_ls
    data_dict['len'] = len(data_dict['name'])
    data_dict['H'] = H
    data_dict['W'] = W
    return data_dict


# TODO an image is loaded whenever a patch is needed, this may be a bottleneck
class DataDictLoader():
    def __init__(self, data_dict: Dict,
                 batch_size: int = 16,
                 max_length: int = 128,
                 shuffle: bool = False):
        """
        """

        self.batch_size = batch_size
        self.shuffle = shuffle

        self.batch_size = batch_size

        self.data_dict = data_dict
        self.dataset_len = data_dict['len']
        self.len = self.dataset_len if max_length is None else min(
            self.dataset_len, max_length)
        # Calculate # batches
        num_batches, remainder = divmod(self.len, self.batch_size)
        if remainder > 0:
            num_batches += 1
        self.num_batches = num_batches

    def __iter__(self):
        if self.shuffle:
            r = torch.randperm(self.dataset_len)
            self.data_dict = {k: v[r] if isinstance(
                v, Iterable) else v for k, v in self.data_dict.items()}
        self.i = 0
        return self

    def __next__(self):
        if self.i >= self.len:
            raise StopIteration
        batch = {k: v[self.i:self.i+self.batch_size]
                 if isinstance(v, Iterable) else v for k, v in self.data_dict.items()}

        self.i += self.batch_size
        return batch

    def __len__(self):
        return self.num_batches


class PatchDataModule(pl.LightningDataModule):

    def __init__(self, data_dict,
                 patch_size: int = 2**5,
                 batch_size: int = 2**4,
                 patch_num: int = 2**6):
        super().__init__()
        self.data_dict = data_dict
        self.H, self.W = data_dict['H'], data_dict['W']
        self.len = data_dict['len']

        self.batch_size = batch_size
        self.patch_size = patch_size
        self.patch_num = patch_num

    def dataloader(self, data_dict,  **kwargs):
        return DataDictLoader(data_dict, **kwargs)

    def train_dataloader(self):
        patches = self.cut_patches()
        return self.dataloader(patches, batch_size=self.batch_size, shuffle=True,
                               max_length=self.patch_num)

    def val_dataloader(self):
        return self.dataloader(self.data_dict, batch_size=1)

    def test_dataloader(self):
        return self.dataloader(self.data_dict)  # TODO batch size

    def cut_patches(self):
        # TODO cycle once
        patch_indices = get_valid_indices(
            self.H, self.W, self.patch_size, self.patch_size//4)
        dd = {k: cut_patches(
            v, patch_indices, self.patch_size) for k, v in self.data_dict.items()
            if isinstance(v, torch.Tensor)
        }
        threshold = 0.1
        mask_p = torch.mean(
            dd.get('mask', torch.ones_like(dd['input'])), dim=(-1, -2, -3))
        masked_idx = (mask_p > threshold).nonzero(as_tuple=True)[0]
        dd = {k: v[masked_idx] for k, v in dd.items()}
        dd['len'] = len(masked_idx)
        dd['H'], dd['W'] = (self.patch_size,)*2

        return dd


class ImageDataset(Dataset):
    def __init__(self, file_paths: Iterable, read_func: Callable = read_image_tensor):
        self.file_paths = file_paths

    def __getitem__(self, idx: int) -> dict:
        file = self.file_paths[idx]
        return read_image_tensor(file), file.name

    def __len__(self) -> int:
        return len(self.file_paths)