Spaces:
Sleeping
Sleeping
File size: 4,343 Bytes
2a5f9fb df66f6e 2a5f9fb df66f6e 6e56e0d df66f6e 6e56e0d 71b7c19 6e56e0d 9833cdb 6e56e0d 7302987 6e56e0d 71b7c19 7302987 6eb8bfd 1e11692 71b7c19 6eb8bfd 7302987 6eb8bfd 7302987 6eb8bfd 71b7c19 3dfaf22 6e56e0d 3dfaf22 6e56e0d 7302987 3dfaf22 6e56e0d 2a5f9fb 9833cdb 2a5f9fb 9833cdb 2a5f9fb fc1e99b 9833cdb fc1e99b 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import json
import os
from collections import defaultdict
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, token=token, trust_remote_code=trust_remote_code)
if test_tokenizer:
try:
print("TOKEN: %s" % token)
print("model name: %s" % model_name)
print("revision: %s" % revision)
print("trust remote code: %s" % trust_remote_code)
_ = AutoTokenizer.from_pretrained(model_name, revision=revision, token=token, trust_remote_code=trust_remote_code)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, f"'s tokenizer cannot be loaded. This most commonly happens when your tokenizer class is not in a stable transformers release or not correctly configured?\nExact error is: {e}", None)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
|