Spaces:
Sleeping
Sleeping
File size: 915 Bytes
2a5f9fb df66f6e 2a5f9fb 395eff6 2a5f9fb df66f6e 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
from huggingface_hub import HfApi
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
REPO_ID = "HuggingFaceH4/open_llm_leaderboard"
QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
CACHE_PATH="/data"
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
PATH_TO_COLLECTION = "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03"
# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
API = HfApi(token=H4_TOKEN)
|