Spaces:
Runtime error
Runtime error
File size: 1,583 Bytes
ea6afa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import torch
import random
from vocabulary_split import split_vocabulary, filter_logits
from masking_methods import tokenizer
# Get permissible vocabulary
permissible, _ = split_vocabulary(seed=42)
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))])
def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0):
# Convert logits to a tensor and filter based on permissible indices
filtered_logits = filter_logits(torch.tensor(logits), permissible_indices)
probs = torch.softmax(filtered_logits / temperature, dim=-1)
# Select sampling technique
if sampling_technique == 'inverse_transform':
cumulative_probs = torch.cumsum(probs, dim=-1)
random_prob = random.random()
sampled_index = torch.searchsorted(cumulative_probs, random_prob)
elif sampling_technique == 'exponential_minimum':
exp_probs = torch.exp(-torch.log(probs))
sampled_index = torch.argmax(random.rand_like(exp_probs) * exp_probs)
elif sampling_technique == 'temperature':
sampled_index = torch.multinomial(probs, 1).item()
elif sampling_technique == 'greedy':
sampled_index = torch.argmax(filtered_logits).item()
else:
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")
sampled_word = tokenizer.decode([sampled_index])
# Replace [MASK] with the sampled word
filled_sentence = sentence.replace('[MASK]', sampled_word)
return filled_sentence
|