Spaces:
Runtime error
Runtime error
File size: 5,354 Bytes
ea6afa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
import random
from nltk.corpus import stopwords
import nltk
from vocabulary_split import split_vocabulary, filter_logits
# Load tokenizer and model for masked language model
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
# Get permissible vocabulary
permissible, _ = split_vocabulary(seed=42)
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))])
# Initialize stop words and ensure NLTK resources are downloaded
stop_words = set(stopwords.words('english'))
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
def get_logits_for_mask(sentence):
inputs = tokenizer(sentence, return_tensors="pt")
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
return logits[0, mask_token_index, :].squeeze()
def mask_word(sentence, word):
masked_sentence = sentence.replace(word, '[MASK]', 1)
logits = get_logits_for_mask(masked_sentence)
filtered_logits = filter_logits(logits, permissible_indices)
words = [tokenizer.decode([i]) for i in filtered_logits.argsort()[-5:]]
return masked_sentence, filtered_logits.tolist(), words
def mask_non_stopword(sentence, pseudo_random=False):
non_stop_words = [word for word in sentence.split() if word.lower() not in stop_words]
if not non_stop_words:
return sentence, None, None
if pseudo_random:
random.seed(10) # Fixed seed for pseudo-randomness
word_to_mask = random.choice(non_stop_words)
return mask_word(sentence, word_to_mask)
def mask_between_lcs(sentence, lcs_points):
words = sentence.split()
masked_indices = []
# Mask first word before the first LCS point
if lcs_points and lcs_points[0] > 0:
idx = random.randint(0, lcs_points[0] - 1)
words[idx] = '[MASK]'
masked_indices.append(idx)
# Mask between LCS points
for i in range(len(lcs_points) - 1):
start, end = lcs_points[i], lcs_points[i + 1]
if end - start > 1:
mask_index = random.randint(start + 1, end - 1)
words[mask_index] = '[MASK]'
masked_indices.append(mask_index)
# Mask last word after the last LCS point
if lcs_points and lcs_points[-1] < len(words) - 1:
idx = random.randint(lcs_points[-1] + 1, len(words) - 1)
words[idx] = '[MASK]'
masked_indices.append(idx)
masked_sentence = ' '.join(words)
logits = get_logits_for_mask(masked_sentence)
logits_list, top_words_list = [], []
for idx in masked_indices:
filtered_logits = filter_logits(logits[idx], permissible_indices)
logits_list.append(filtered_logits.tolist())
top_words = [tokenizer.decode([i]) for i in filtered_logits.topk(5).indices.tolist()]
top_words_list.append(top_words)
return masked_sentence, logits_list, top_words_list
def high_entropy_words(sentence, non_melting_points):
non_melting_words = {word.lower() for _, point in non_melting_points for word in point.split()}
candidate_words = [word for word in sentence.split() if word.lower() not in stop_words and word.lower() not in non_melting_words]
if not candidate_words:
return sentence, None, None
max_entropy, max_entropy_word, max_logits = -float('inf'), None, None
for word in candidate_words:
masked_sentence = sentence.replace(word, '[MASK]', 1)
logits = get_logits_for_mask(masked_sentence)
filtered_logits = filter_logits(logits, permissible_indices)
# Calculate entropy
probs = torch.softmax(filtered_logits, dim=-1)
top_5_probs = probs.topk(5).values
entropy = -torch.sum(top_5_probs * torch.log(top_5_probs + 1e-10)) # Avoid log(0)
if entropy > max_entropy:
max_entropy, max_entropy_word, max_logits = entropy, word, filtered_logits
if max_entropy_word is None:
return sentence, None, None
masked_sentence = sentence.replace(max_entropy_word, '[MASK]', 1)
words = [tokenizer.decode([i]) for i in max_logits.argsort()[-5:]]
return masked_sentence, max_logits.tolist(), words
def mask_by_pos(sentence, pos_to_mask=['NOUN', 'VERB', 'ADJ']):
words = nltk.word_tokenize(sentence)
pos_tags = nltk.pos_tag(words)
maskable_words = [word for word, pos in pos_tags if pos[:2] in pos_to_mask]
if not maskable_words:
return sentence, None, None
word_to_mask = random.choice(maskable_words)
return mask_word(sentence, word_to_mask)
def mask_named_entity(sentence):
words = nltk.word_tokenize(sentence)
pos_tags = nltk.pos_tag(words)
named_entities = nltk.ne_chunk(pos_tags)
maskable_words = [word for word, tag in named_entities.leaves() if isinstance(tag, nltk.Tree)]
if not maskable_words:
return sentence, None, None
word_to_mask = random.choice(maskable_words)
return mask_word(sentence, word_to_mask)
|