File size: 22,349 Bytes
b44ec28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126b611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44ec28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942cb0a
b44ec28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6cf76
5d260d8
e0bcd3e
9a6cf76
8c7a465
6a385ac
5d260d8
b44ec28
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import re

import google.generativeai as genai
import PyPDF2
import streamlit as st
from docx import Document
from langchain.memory import ConversationBufferMemory
from langchain.prompts import (ChatPromptTemplate, HumanMessagePromptTemplate,
                               MessagesPlaceholder)
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from langchain_core.messages import SystemMessage  # Updated import
from langchain_google_genai import ChatGoogleGenerativeAI


# Function to extract text from PDF
def extract_text_from_pdf(uploaded_file):
    text = ""
    reader = PyPDF2.PdfReader(uploaded_file)
    for page in reader.pages:
        text += page.extract_text()
    return text

# Function to extract text from Word document
def extract_text_from_word(uploaded_file):
    text = ""
    doc = Document(uploaded_file)
    for paragraph in doc.paragraphs:
        text += paragraph.text + "\n"
    return text

def parse_mcq_questions(mcq_list):
    # Split the string into individual questions
    questions = re.split(r'\d+\.\s+', mcq_list)[1:]  #  Skip the empty first element
    parsed_questions = []
    
    for q in questions:
        # Split into question and options
        parts = q.strip().split('    - ')
        question = parts[0].strip()
        options = {
            opt[0]: opt[2:].strip()
            for opt in parts[1:]
        }
        parsed_questions.append({
            'question': question,
            'options': options
        })
    
    return parsed_questions
# Function to generate MCQs using LLM
def generate_mcqs(keywords):
    # Construct the query
    query = {"human_input": f"""
You are an advanced AI model trained to generate high-quality multiple-choice questions (MCQs).
Based on the provided list of skills: {keywords}, create **exactly 10 MCQs**. Each MCQ should focus on most important concepts related to the internal topics of each skill.
For example, if the keyword is "Python," the questions should be derived from core Python concepts, like data structures, syntax, or libraries.

The MCQs should follow this structure:

1. A clear and concise important question based on a topic within the skill.
2. Four options (labeled as A, B, C, and D).
3. Only one correct answer per question, with the other options serving as plausible distractors.

Do not provide any other information, explanations, or extra text. Output **only** the 10 MCQs in proper structure, like this:

1. Question text...
   - A) Option 1
   - B) Option 2
   - C) Option 3
   - D) Option 4

2. Question text...
   - A) Option 1
   - B) Option 2
   - C) Option 3
   - D) Option 4

Continue this format for all 10 questions.
"""}

    # Invoke the language model to generate MCQs
    response = chain.invoke(query)
    memory.save_context(query, {"output": response})

    # Return the generated MCQs as a string
    return response

# Function to evaluate MCQ answers
def evaluate_mcqs(mcq_list, answers):
    query = {"human_input": f"""
    You are an advanced AI model trained to evaluate answers for high-quality multiple-choice questions (MCQs). Act as an expert professional in all relevant skills and concepts, analyzing the user's answers in detail. Follow these instructions:
    1. Evaluate the provided answers {answers} against the correct answers for the MCQs.
    2. Award 1 mark for each correct answer. Determine if each answer is correct or incorrect.
    3. For incorrect answers:
       - Analyze deeply to identify the specific concepts or subtopics within the skill where the user is struggling.
       - Provide a focused list of concepts the user needs to improve on, derived from the incorrect answers.
    4. At the end of the evaluation, output:
       - Total marks scored (out of 10).
       - A detailed and analyzed one by one list of concepts to focus on, ensuring they address the root areas of misunderstanding or lack of knowledge.
    Output **only** the following information:
    - Total marks scored: X/10
    - Concepts to focus on: [Provide an analyzed and specific list of concepts derived from incorrect answers]
    """}

    response = chain.invoke(query)
    memory.save_context(query, {"output": response})
    return response

# Function to generate Questions using LLM
def generate_questions(keywords):
    # Construct the query
    query = {"human_input": f"""
You are a highly advanced AI trained to act as a real-time interview expert. Based on the provided keywords {keywords}, identify the most relevant skills and generate exactly two coding interview questions.
These questions should adhere to the professional structure used in coding platforms like LeetCode or HackerRank. Follow these instructions:

1. Analyze the provided keywords to identify key skills and concepts.
2. Generate two easy to medium-level coding questions that align with these skills.
3. Ensure the questions are well-structured, with a clear problem statement, input format, output format, and example(s) for clarity.
4. Output the questions in the following format:

Question 1: [Title of the Question]

Problem Statement: [Provide a clear description of the problem.]

Input Format: [Specify the format of input(s).]
Output Format: [Specify the format of output(s).]
Constraints: [Mention constraints, if applicable.]

Example(s):
- Input: [Provide sample input]
- Output: [Provide corresponding output]

Question 2: [Title of the Question]

Problem Statement: [Provide a clear description of the problem.]

Input Format: [Specify the format of input(s).]
Output Format: [Specify the format of output(s).]
Constraints: [Mention constraints, if applicable.]

Example(s):
- Input: [Provide sample input]
- Output: [Provide corresponding output]
"""}

    # Invoke the language model to generate MCQs
    response = chain.invoke(query)
    memory.save_context(query, {"output": response})

    # Return the generated MCQs as a string
    return response


# Function to Interview start using LLM
def interview(job_description_keywords):
    # Construct the query
    query = {"human_input": f"""
You are a real-time expert interviewer with in-depth knowledge of various industries, job roles, and market trends.
Your task is to conduct an interview for a specific job role based on the given keywords: {job_description_keywords}.
Analyze the keywords to fully understand the role's responsibilities, required skills, and challenges. Use this understanding to ask relevant and impactful interview questions.

Rules:
1. Begin the interview with a self-introduction question to ease the candidate into the process.
2. Ask 10 highly effective, real-world interview questions tailored to the role, progressing from general to more specific and challenging.
3. Ensure the questions focus on assessing the candidate’s practical knowledge, problem-solving skills, and ability to handle real-world scenarios.
4. Incorporate situational and behavioral questions to evaluate how the candidate handles challenges and decision-making.
5. The last two questions must delve into the candidate’s past projects, focusing on:
   - The project's purpose and goals.
   - Challenges faced and how they were addressed.
   - Impact and measurable outcomes.
6. Provide one question at a time, without additional context, explanations, or formatting.
7. Questions must be clear, concise, and aligned with the job role, ensuring they reflect real-time industry expectations.

Start the interview with the first question.
"""}

    # Invoke the language model to generate MCQs
    response = chain.invoke(query)
    memory.save_context(query, {"output": response})

    # Return the generated MCQs as a string
    return response


# Initialize Google Generative AI chat model
def initialize_chat_model():
    with open("key.txt", "r") as f:
        GOOGLE_API_KEY = f.read().strip()

    chat_model = ChatGoogleGenerativeAI(
        google_api_key=GOOGLE_API_KEY,
        model="gemini-1.5-pro-latest",
        temperature=0.4,
        max_tokens=2000,
        timeout=120,
        max_retries=5,
        top_p=0.9,
        top_k=40,
        presence_penalty=0.6,
        frequency_penalty=0.3
    )
    return chat_model

chat_model = initialize_chat_model()

# Create Chat Template
chat_prompt_template = ChatPromptTemplate.from_messages(
    [
        SystemMessage(
            content="""  You are a language model designed to follow user instructions exactly as given.
            Do not take any actions or provide any information unless specifically directed by the user.
            Your role is to fulfill the user's requests precisely without deviating from the instructions provided."""
        ),
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template("{human_input}")
    ]
)

# Initialize the Memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

# Create an Output Parser
output_parser = StrOutputParser()

# Define a chain
chain = RunnablePassthrough.assign(
            chat_history=RunnableLambda(lambda human_input: memory.load_memory_variables(human_input)['chat_history'])
        ) | chat_prompt_template | chat_model | output_parser

# Streamlit App
st.title("Interview Preparation with AI")
st.markdown("## Part-1: Upload Files, Summarize, and Extract Keywords")

# File upload section
file1 = st.file_uploader("Upload your resume (PDF or DOCX):", type=["pdf", "docx"])
file2 = st.file_uploader("Upload the job description (PDF or DOCX):", type=["pdf", "docx"])

if file1 and file2:
    try:
        # Detect file type and extract text for file 1
        if file1.name.endswith('.pdf'):
            text1 = extract_text_from_pdf(file1)
        elif file1.name.endswith('.docx'):
            text1 = extract_text_from_word(file1)
        else:
            st.error("Unsupported file type for file 1")

        # Detect file type and extract text for file 2
        if file2.name.endswith('.pdf'):
            text2 = extract_text_from_pdf(file2)
        elif file2.name.endswith('.docx'):
            text2 = extract_text_from_word(file2)
        else:
            st.error("Unsupported file type for file 2")

        # Ensure session state variables are initialized

        # if "ats_score_calculated" not in st.session_state:
        #     st.session_state.ats_score_calculated = False
        if 'resume_keywords' not in st.session_state:
            st.session_state.resume_keywords = text1
        if 'job_description_keywords' not in st.session_state:
            st.session_state.job_description_keywords = text2              

        # Button to Calculate ATS Score
        if st.button("ATS Score"): #or st.session_state.ats_score_calculated:
            
            #st.session_state.ats_score_calculated = True
            st.markdown("### ATS Score Calculation")
            query = {"human_input": f"""
    Act as an expert ATS (Applicant Tracking System) analyst with 15+ years of experience in HR tech. 
    Perform deep analysis of this resume and job description with military precision:

    Job Description: {job_description_keywords}
    Resume: {resume_keywords}

    Execute these steps systematically:

    1. INITIAL ANALYSIS PHASE
    a. Extract ALL requirements from job description with priority levels (mandatory/nice-to-have)
    b. Parse resume with entity recognition (skills, dates, roles, certifications)
    c. Create skill ontology mapping between job requirements and resume content

    2. REQUIREMENTS BREAKDOWN ENGINE
    For EACH job requirement:
    i. Check exact match in resume - calculate total duration across positions
    ii. If no direct match:
    - Split requirement into 3-5 sub-skills using competency framework
    - For each sub-skill:
        * Search related terms in resume
        * Calculate cumulative experience duration
        * Apply 30% experience decay for indirect matches
    iii. Apply scoring:
    - 0.5 pts per year of direct experience (max 4pts/requirement)
    - 0.3 pts per year of indirect sub-skill experience (max 2pts/sub-skill)
    - -1.5 pts for missing mandatory requirements

    3. EXPERIENCE CALCULATION MATRIX
    a. Parse employment dates with month/year precision
    b. For overlapping positions: apply parallel experience weighting (x1.2)
    c. Convert all experience to decimal years (e.g., 1y 6m = 1.5)
    d. For management roles: add 0.5y virtual experience per subordinate

    4. SECTION OPTIMIZATION SCORECARD
    Analyze and score (0-100) with weighted impact:
    - Technical Skills Match (35% weight)
    - Experience Duration (25%)
    - Education/Certifications (15%)
    - Keyword Density (10%)
    - Project Relevance (10%)
    - Leadership Keywords (5%)

    5. REAL-TIME ATS SCORE REPORT
    Generate structured output with:
    A. Requirement Analysis Matrix:
    | Requirement | Type | Direct Exp | Sub-Skills Matched | Sub-Skill Exp | Score | Hit/Miss |

    B. Experience Calculation Ledger:
    | Skill Cluster | Resume Terms | Positions Matched | Raw Duration | Weighted Duration |

    C. Gap Analysis:
    - Top 3 missing requirements
    - Under-qualified areas with improvement roadmap

    D. Final ATS Score Breakdown:
    - Base Score (0-100)
    - Bonus Points (certifications, premium education)
    - Penalties (missing mandatory)
    - Final Adjusted Score

    E. Optimization Recommendations:
    - Exact terminology to add
    - Strategic placement suggestions
    - Skill emphasis ratios

    F. Give the final overal ATS score

    FORMAT REQUIREMENTS:
    - Use markdown tables with exact duration calculations
    - Show intermediate scoring computations
    - Highlight critical matches/misses with icons (✅/⚠️/❌)
    - Include confidence intervals for experience calculations
    - Add time-adjusted scoring (older experience = 0.8 decay/year)
    - Normalize scores against industry benchmarks

    Deliver professional-grade analysis suitable for enterprise HR decisions.
    """}

            response = chain.invoke(query)
            memory.save_context(query, {"output": response})
            st.write(response)

        if 'questions' not in st.session_state:
            # Your MCQ string goes here
            mcq_list = generate_mcqs(st.session_state.job_description_keywords)
            st.session_state.questions = parse_mcq_questions(mcq_list)
            
        if 'current_question' not in st.session_state:
            st.session_state.current_question = 0
        if 'answers' not in st.session_state:
            st.session_state.answers = []            
            
        if "mcq_button" not in st.session_state:
            st.session_state.mcq_button = False
            
        if st.button("MCQ Test") or st.session_state.mcq_button:               
            st.session_state.mcq_button = True
# Display current question number and total questions
            st.write(f"Question {st.session_state.current_question + 1} of {len(st.session_state.questions)}")
             
            # Display current question
            current_q = st.session_state.questions[st.session_state.current_question]
            st.write(current_q['question'])
            
            # Create radio buttons for options with the corrected format_func
            answer = st.radio(
                "Select your answer:",
                options=['A', 'B', 'C', 'D'],  # List of option keys
                format_func=lambda x: f"{x}) {current_q['options'].get(x, ' ')}",
                key=f"question_{st.session_state.current_question}"  # Unique key per question
            )
            
            # Navigation buttons in columns
            col1, col2 = st.columns(2)
            
            if st.session_state.current_question > 0:
                with col1:
                    if st.button("Previous"):
                        st.session_state.current_question -= 1
                        st.rerun()
            
            if st.session_state.current_question < len(st.session_state.questions) - 1:
                with col2:
                    if st.button("Next"):
                        st.session_state.answers.append(f"{st.session_state.current_question + 1}-{answer}")
                        st.session_state.current_question += 1
                        st.rerun()
            else:
                with col2:
                    if st.button("Submit"):
                        st.session_state.answers.append(f"{st.session_state.current_question + 1}-{answer}")
                        st.write("Quiz completed! Your answers:")
                        
                        
                        query = {"human_input": f"""
    You are an advanced AI model trained to evaluate answers for high-quality multiple-choice questions (MCQs). Act as an expert professional in all relevant skills and concepts, analyzing the user's answers in detail. Follow these instructions:
    1. Evaluate the provided answers : {st.session_state.answers} against the correct answers for the MCQs.
    2. Award 1 mark for each correct answer. Determine if each answer is correct or incorrect.
    3. For incorrect answers:
       - Analyze deeply to identify the specific concepts or subtopics within the skill where the user is struggling.
       - Provide a focused list of concepts the user needs to improve on, derived from the incorrect answers.
    4. At the end of the evaluation, output:
       - Total marks scored (out of 10).
       - A detailed and analyzed one by one list of concepts to focus on, ensuring they address the root areas of misunderstanding or lack of knowledge.
    Output **only** the following information:
    - Total marks scored: X/10
    - Concepts to focus on: [Provide an analyzed and specific list of concepts derived from incorrect answers]
    """}

                        response = chain.invoke(query)
                        memory.save_context(query, {"output": response})
                        st.session_state.mcq_button = False
                        #st.write(response)
                        
                        #st.write(st.session_state.answers)
                        
        if "generate_questions_button" not in st.session_state:
            st.session_state.generate_questions_button = False
                                    
        if st.button("Generate Questions") or st.session_state.generate_questions_button:
            st.session_state.generate_questions_button = True
                # Generate questions
            
            if 'questions_response' not in st.session_state:
                st.session_state.questions_response = generate_questions(st.session_state.job_description_keywords)
                        
            
            # Split questions
            code_questions = [q.strip() for q in st.session_state.questions_response.split("Question")[1:]]
            code_questions = [f"Question{q}" for q in code_questions]

            
            # Display questions and collect answers
            st.session_state.code_questions = code_questions
            st.session_state.coding_answers = [""] * len(code_questions)
            
            # Display each question with a text area for answers
            for i, question in enumerate(code_questions):
                st.markdown(f"### {question}")
                cod_answer = st.text_area(f"Your Answer for Question {i+1}", key=f"answer_{i}")
                st.session_state.coding_answers[i] = cod_answer
            
            if st.button("Submit Answers"):
                st.write("### Submitted Answers:")
                #st.write(st.session_state.coding_answers)


                query = {"human_input": f"""
Evaluate the following user responses to two coding questions:

**User Responses:**
{st.session_state.coding_answers}

**Evaluation Criteria:**

* **Perfection:** Each question carries 10 marks.
* **Assess:**
    * Correctness of the code logic and implementation.
    * Efficiency of the solution (time and space complexity).
    * Code readability, maintainability, and adherence to best practices.
    * Handling of edge cases and potential errors.

**Output:**

* **Marks:**
    * **Question 1:** [Out of 10 marks]
    * **Question 2:** [Out of 10 marks]
* **Analysis:**
    * Identify areas where the user needs to improve.
    * Suggest specific topics or concepts for further study and practice.
    * Provide constructive feedback on the user's approach and coding style.

**Note:**
* Provide a concise and informative evaluation.
* Avoid vague or generic feedback.
"""}

                response = chain.invoke(query)
                memory.save_context(query, {"output": response})
                st.session_state.generate_questions_button = False
                st.write(response)
                
        if "Interview_questions_button" not in st.session_state:
            st.session_state.Interview_questions_button = False
            
        if st.button("Interview Questions") or st.session_state.Interview_questions_button:
            st.session_state.Interview_questions_button = True


            if 'flag' not in st.session_state:
                st.session_state.flag = 1
          
            if st.session_state.flag <= 10 :
                
                if 'interview_questions' not in st.session_state:
                    st.session_state.interview_questions = interview(st.session_state.job_description_keywords)
                    st.write(st.session_state.interview_questions)
                    
                #Input from the user using chat_input
                human_prompt = st.chat_input(" Message Pega ...")
                if True :
                    query = {"human_input": "I am Bhanu prasad, I have completed my graduation in 2024"}
                    query1 = {"human_input": human_prompt}
                    st.write(query)
                    st.write(query1)
                    response = chain.invoke(query1)
                    memory.save_context(query, {"output": response})
                    st.write(response)
                    st.session_state.flag += 1


    except Exception as e:
        st.error(f"An error occurred: {e}")

else:
    st.info("Please upload both files to proceed.")