File size: 12,623 Bytes
9037361
 
 
 
 
1430ef7
 
 
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
1430ef7
9037361
9d73d29
1430ef7
9d73d29
 
 
9037361
9d73d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
 
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
 
 
9037361
 
 
 
 
 
9d73d29
 
 
 
 
 
1430ef7
 
 
9d73d29
 
 
 
 
 
 
 
1430ef7
9037361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d73d29
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import json
import pandas as pd
import time

import phoenix as px
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor

#from hallucinator import HallucinatonEvaluater

from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate

from langchain.chains import RetrievalQA
from langchain.callbacks import StdOutCallbackHandler

#from langchain.retrievers import KNNRetriever
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.vectorstores import FAISS


from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter


import numpy as np
import streamlit as st
import pandas as pd
# from sklearn import datasets
# from sklearn.ensemble import RandomForestClassifier

from PIL import Image


global trace_df

# Page config
st.set_page_config(page_title="RAG PoC", layout="wide")
st.sidebar.image(Image.open("./test-logo.png"), use_column_width=True)

@st.cache_resource
def tracer_config():
    #phoenix setup
    session = px.launch_app()
    # If no exporter is specified, the tracer will export to the locally running Phoenix server
    tracer = OpenInferenceTracer()
    # If no tracer is specified, a tracer is constructed for you
    LangChainInstrumentor(tracer).instrument()
    time.sleep(3)
    print(session.url)

tracer_config()




tab1, tab2 = st.tabs(["📈 **RAG**", "🗃 FactVsHallucinate" ])



os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"

# embedding cache
#store = LocalFileStore("./cache/")

# define embedder
embedder  = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
#embedder=HuggingFaceHub(repo_id="sentence-transformers/all-mpnet-base-v2")
#embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store)

# define llm
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000})
handler =  StdOutCallbackHandler()

# set global variable
# vectorstore = None
# retriever = None


class HallucinatePromptContext:
    def __init__(self):
        self.variables_list = ["query","answer","context"]
        self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is
generated to the question based on the reference text. The answer may contain false information, you
must use the reference text to determine if the answer to the question contains false information,
if the answer is a hallucination of facts. Your objective is to determine whether the reference text
contains factual information and is not a hallucination. A 'hallucination' in this context refers to
an answer that is not based on the reference text or assumes information that is not available in
the reference text. Your response should be a single word: either "factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated" indicates that the answer
provides factually inaccurate information to the query based on the reference text. "factual"
indicates that the answer to the question is correct relative to the reference text, and does not
contain made up information. Please read the query and reference text carefully before determining
your response.
 
    # Query: {query}
    # Reference text: {context}
    # Answer: {answer}
    Is the answer above factual or hallucinated based on the query and reference text?"""
        
        

class HallucinatonEvaluater:
    def __init__(self, item):
        self.question = item["question"]
        self.answer = item["answer"]
        #self.domain = item["domain"]
        self.context = item["context"]
        self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})

    def get_prompt_template(self):
        prompt = HallucinatePromptContext()
        template = prompt.base_template
        varialbles = prompt.variables_list
        eval_template = PromptTemplate(input_variables=varialbles, template=template)
        return eval_template

    def evaluate(self):
        prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context)
        score = self.llm(prompt)
        return score
    



@st.cache_resource
def initialize_vectorstore():

    webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load()    
    webpage_chunks = _text_splitter(webpage_loader)

    global vectorstore
    global retriever

    # store embeddings in vector store
    vectorstore = FAISS.from_documents(webpage_chunks, embedder)
    print("vector store initialized with sample doc")

    # instantiate a retriever
    retriever = vectorstore.as_retriever()

    return retriever


def _text_splitter(doc):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=600,
        chunk_overlap=50,
        length_function=len,
    )
    return text_splitter.transform_documents(doc)

def _load_docs(path: str):
    load_doc = WebBaseLoader(path).load()
    doc = _text_splitter(load_doc)
    return doc






def rag_response(response):
    #st.markdown("""<hr style="height:10px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)

    #st.markdown(".stTextInput > label {font-size:105%; font-weight:bold; color:blue;} ",unsafe_allow_html=True) #for all text-input label sections
    
    question_title = '<h1 style="color:#33ff33;font-size:24px;">Question</h1>'
    


    st.markdown('<h1 style="color:#100170;font-size:48px;text-align:center;">RAG Response</h1>', unsafe_allow_html=True)
    st.markdown('<h1 style="color:#100170;font-size:24px;">Question</h1>', unsafe_allow_html=True)
    st.text_area(label="", value=response["query"], height=30)
    st.markdown('<h1 style="color:#100170;font-size:24px;">RAG Output</h1>', unsafe_allow_html=True)
    st.text_area(label="", value=response["result"])
    st.markdown('<h1 style="color:#100170;font-size:24px;">Augmented knowledge</h1>', unsafe_allow_html=True)
    st.text_area(label="", value=response["source_documents"])
    
    #st.button("Check Hallucination")





# Create extractor instance
def _create_hallucination_scenario(item):
    score = HallucinatonEvaluater(item).evaluate()
    return score

def hallu_eval(question: str, answer: str, context: str):
    print("in hallu eval")
    hallucination_score = _create_hallucination_scenario({
            "question": question,
            "answer": answer,
            "context": context            
        }        
    )
    print("got hallu score")
    st.markdown('<h1 style="color:#100170;font-size:24px;">Hallucinated?</h1>', unsafe_allow_html=True)
    st.text_area(label=" ", value=hallucination_score, height=30)
    #return {"hallucination_score": hallucination_score}    
    #time.sleep(10)



# if 'clicked' not in st.session_state:
#     print("set state to False")
#     st.session_state.clicked = False


def click_button(response):
    # print("set state to True")
    # st.session_state.clicked = True

    hallu_eval(response["query"], response["result"], "blah blah")
    
    





#st.write(''' # RAG App''')

with tab1:

  with st.form(" RAG with evaluation - scoring & hallucination "):
    #tab1.subheader(''' # RAG App''')
    retriever = initialize_vectorstore()
    
    #print("lenght in tab1,  ", len(vectorstore.serialize_to_bytes()))
    options = ["true", "false"]
    
    st.markdown('<h1 style="color:#100170;font-size:24px;">User Query</h1>', unsafe_allow_html=True)

    question = st.text_input(label="", value="", placeholder="Type in question",label_visibility="visible", disabled=False)
    #st.markdown('<h2 style="color:#3a0aa6;font-size:24px;">Evaluation</h2>', unsafe_allow_html=True)
    evaluate = st.selectbox(label="***Perform  Evaluation?***",options=options, index=1,  placeholder="Choose an option", disabled=False, label_visibility="visible")

    m = st.markdown("""
                    <style>
                    div.stButton > button:first-child {
                        background-color: #100170;
                        color:#ffffff;
                    }
                    div.stButton > button:hover {
                        background-color: #00ff00;
                        color:#ff0000;
                        }
                    </style>""", unsafe_allow_html=True)

    #st.markdown("----", unsafe_allow_html=True)
    columns = st.columns([2,1,2])
    
    if columns[1].form_submit_button(" Start RAG "):
  
      st.markdown("""<hr style="height:10px;border:none;color:#333;background-color: #100170;" /> """, unsafe_allow_html=True)

      print("retrie  ,", retriever)
      chain = RetrievalQA.from_chain_type(
      llm=llm,
      retriever=retriever,
      callbacks=[handler],
      return_source_documents=True
      )

      #response = chain("how tredence brought good insight?")
      response = chain(question)
      print(response["result"])

    
      rag_response(response)

      click_button(response)





# if st.session_state.clicked:
  
#   # The message and nested widget will remain on the page
#   hallu_eval(response["query"], response["result"], "blah blah")
  

#   print("in if for hallu")
      


with tab2:
  
  
  
  with st.form(" LLM-aasisted evaluation of Hallucination"):
      
    
    #print("lenght in tab2,  ", len(vectorstore.serialize_to_bytes()))    
    question = st.text_input(label="**Question**", value="", label_visibility="visible", disabled=False)
    answer = st.text_input(label="**answer**", value="", label_visibility="visible", disabled=False)
    context = st.text_input(label="**context**", value="", label_visibility="visible", disabled=False)


    if st.form_submit_button("Evaluate"):
        hallu_eval(question, answer, context)
      

print("activ session:  ", px.active_session().get_spans_dataframe())  
trace_df = px.active_session().get_spans_dataframe()

st.session_state['trace_df'] = trace_df

# with tab3:
  
  
  
#   with st.form(" trace"):

#     if px.active_session():  
#         df0 = px.active_session().get_spans_dataframe()
#         if not df0.empty:
#             df= df0.fillna('')
#             st.dataframe(df)

    



def rag():       
  print("in rag")
  options = ["true", "false"]
  question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False)
  evaluate = st.selectbox(label="select evaluation",options=options, index=0,  placeholder="Choose an option", disabled=False, label_visibility="visible")



  if st.button("do RAG"):
    chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    callbacks=[handler],
    return_source_documents=True
    )

    #response = chain("how tredence brought good insight?")
    response = chain(question)
    print(response["result"])

    # time.sleep(4)
    
    # df = px.active_session().get_spans_dataframe()
    # print(px.active_session())
    # print(px.active_session().get_spans_dataframe())
    # print(df.count())        
    # df_sorted = df.sort_values(by='end_time',ascending=False) 

    # model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0])
    # context = model_input["context"]

    # print(context)

    # if evaluate:
    #     score = _create_evaluation_scenario({
    #         "question": question,
    #         "answer": response['result'],
    #         "context": context            
    #     })
    # else:
    #     score = "Evaluation is Turned OFF"

    # return {"question": question, "answer": response['result'], "context": context, "score": score}
    rag_response(response)

    # if st.button("click me"):
    #   click_button(response)

    click = st.button("Do you want to see more?")
    if click:
        st.session_state.more_stuff = True

    if st.session_state.more_stuff:
        click_button(response)
        #st.write("Doing more optional stuff")


    return(response) 
  

a = st.markdown("""
            <style>
            div.stTextArea > textarea {
                background-color: #0099ff;     
                height: 1400px;
                width: 800px;
            }               
            </style>""", unsafe_allow_html=True)