File size: 6,858 Bytes
e543e92
 
 
 
 
 
 
 
 
 
 
 
 
c5ae22c
7cd5f22
 
 
 
 
 
1ae68b9
c5ae22c
 
e543e92
 
 
 
6b33853
 
 
8c9691f
 
 
 
 
6b33853
 
 
 
8c9691f
 
6b33853
 
e543e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import jieba
import torch                
import re
import easyocr
import io
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import BertTokenizer
from AI_Model_architecture import BertLSTM_CNN_Classifier
from lime.lime_text import LimeTextExplainer

# HuggingFace 完整快取路徑設定
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"

# EasyOCR 路徑設定
os.environ["EASYOCR_MODULE_PATH"] = "/tmp/easyocr"

os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface/datasets"
os.environ["HF_TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
HF_TOKEN = os.environ.get("HF_TOKEN")


# OCR 模組
import os

# 在目前專案資料夾下創建一個安全的模型資料夾 (保證有權限)
# 建立一個統一的寫入安全資料夾
safe_dir = '/tmp/easyocr'

# 確保目錄存在
os.makedirs(safe_dir, exist_ok=True)

reader = easyocr.Reader(
    ['ch_tra', 'en'], 
    gpu=torch.cuda.is_available(),
    model_storage_directory=safe_dir,        # 下載模型放這裡
    user_network_directory=safe_dir          # 神經網路架構參數也放這裡
)

# 設定裝置(GPU 優先)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 載入模型與 tokenizer
def load_model_and_tokenizer():
    global model, tokenizer

    if os.path.exists("model.pth"):
        print("✅ 已找到 model.pth 載入模型")
        model_path = "model.pth"
    else:
        print("🚀 未找到 model.pth")
        model_path = hf_hub_download(repo_id="Bennie12/Bert-Lstm-Cnn-ScamDetecter", 
                              filename="model.pth",
                              token=HF_TOKEN)

    model = BertLSTM_CNN_Classifier()
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.to(device)
    model.eval()

    tokenizer = BertTokenizer.from_pretrained("ckiplab/bert-base-chinese", use_fast=False)

    return model, tokenizer

model, tokenizer = load_model_and_tokenizer()
model.eval()

# 預測單一句子的分類結果
def predict_single_sentence(model, tokenizer, sentence, max_len=256):
    sentence = re.sub(r"\s+", "", sentence)
    sentence = re.sub(r"[^\u4e00-\u9fffA-Za-z0-9。,!?:/._-]", "", sentence)

    encoded = tokenizer(sentence, return_tensors="pt", truncation=True, padding="max_length", max_length=max_len)
    encoded = {k: v.to(device) for k, v in encoded.items()}

    with torch.no_grad():
        output = model(encoded["input_ids"], encoded["attention_mask"], encoded["token_type_ids"])
        prob = torch.sigmoid(output).item()
        label = int(prob > 0.5)
    risk = "🟢 低風險(正常)"
    if prob > 0.9:
        risk = "🔴 高風險(極可能是詐騙)"
    elif prob > 0.5:
        risk = "🟡 中風險(可疑)"

    pre_label = '詐騙' if label == 1 else '正常'
    
    return {
        "label": pre_label,
        "prob": prob,
        "risk": risk
    }

# 提供 LIME 用的 predict_proba
def predict_proba(texts):
    # tokenizer 批次處理
    encoded = tokenizer(
        texts,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=256
    )

    # 移動到 GPU 或 CPU
    encoded = {k: v.to(device) for k, v in encoded.items()}

    with torch.no_grad():
        outputs = model(encoded["input_ids"], encoded["attention_mask"], encoded["token_type_ids"])
        # outputs shape: (batch_size,)
        probs = torch.sigmoid(outputs).cpu().numpy()


    # 轉成 LIME 格式:(N, 2)
    probs_2d = np.vstack([1-probs, probs]).T
    return probs_2d



# 初始化 LIME explainer
class_names = ['正常', '詐騙']
lime_explainer = LimeTextExplainer(class_names=class_names)

# 擷取可疑詞彙 (改用 LIME)

def suspicious_tokens(text, explainer=lime_explainer, top_k=5):
    try:
        explanation = explainer.explain_instance(text, predict_proba, num_features=top_k, num_samples=200)
        keywords = [word for word, weight in explanation.as_list()]
        return keywords
    except Exception as e:
        print("⚠ LIME 失敗,啟用 fallback:", e)
        fallback = ["繳費", "終止", "逾期", "限時", "驗證碼"]
        return [kw for kw in fallback if kw in text]


# 文字清理
def clean_text(text):
    text = re.sub(r"https?://\S+", "", text)
    text = re.sub(r"[a-zA-Z0-9:/.%\-_=+]{4,}", "", text)
    text = re.sub(r"\+?\d[\d\s\-]{5,}", "", text)
    text = re.sub(r"[^一-龥。,!?、]", "", text)
    sentences = re.split(r"[。!?]", text)
    cleaned = "。".join(sentences[:4])
    return cleaned[:300]

# 高亮顯示

def highlight_keywords(text, keywords, prob):
    """
    根據模型信心值 (prob) 動態決定螢光標註顏色,
    並結合 jieba 斷詞,針對 LIME 輸出長片段進行子詞高亮標註。
    """
    if prob < 0.15:  # 低風險完全不標註
        return text

    # 決定標註顏色
    if prob >= 0.65:
        css_class = 'red-highlight'
    else:
        css_class = 'yellow-highlight'

    # 對每個 keyword 進行 jieba 斷詞後標註
    for phrase in keywords:
        for word in jieba.cut(phrase):
            word = word.strip()
            if len(word) >= 2 and word in text:
                text = text.replace(word, f"<span class='{css_class}'>{word}</span>")
    return text




# 文字分析主流程
def analyze_text(text):
    cleaned_text = clean_text(text)
    result = predict_single_sentence(model, tokenizer, cleaned_text)
    label = result["label"]
    prob = result["prob"]
    risk = result["risk"]
    
    suspicious = suspicious_tokens(cleaned_text)
    # 依照可疑度做不同標註
    highlighted_text = highlight_keywords(text, suspicious, prob)
    # 低風險下不回傳 suspicious_keywords
    if prob < 0.15:
        suspicious = []
        
    print(f"\n📩 訊息內容:{text}")
    print(f"✅ 預測結果:{label}")  
    print(f"📊 信心值:{round(prob*100, 2)}")
    print(f"⚠️ 風險等級:{risk}")
    print(f"可疑關鍵字擷取: {suspicious}")

    return {
        "status": label,
        "confidence": round(prob * 100, 2),
        "suspicious_keywords": suspicious,
        "highlighted_text": highlighted_text 
    }

# 圖片 OCR 分析
def analyze_image(file_bytes):
    image = Image.open(io.BytesIO(file_bytes))
    image_np = np.array(image)
    results = reader.readtext(image_np)
    
    text = ' '.join([res[1] for res in results]).strip()
    
    if not text:
        return {
            "status" : "無法辨識文字",
            "confidence" : 0.0,
            "suspicious_keywords" : ["圖片中無可辨識的中文英文"],
            "highlighted_text": "無法辨識可疑內容"
        }
    return analyze_text(text)