File size: 10,351 Bytes
caab23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Utilities for interfacing with the attentions from the front end.
"""
import torch
from typing import List, Union
from abc import ABC, abstractmethod

from transformer_formatter import TransformerOutputFormatter
from utils.token_processing import reshape
from spacyface import (
    BertAligner,
    GPT2Aligner,
    RobertaAligner,
    DistilBertAligner,
    auto_aligner
)

from transformers import (
    BertForMaskedLM,
    GPT2LMHeadModel,
    RobertaForMaskedLM,
    DistilBertForMaskedLM,
)

from utils.f import delegates, pick, memoize

def get_cls(class_name):
    cls_type = {
        'bert-base-uncased': BertDetails,
        'bert-base-cased': BertDetails,
        'bert-large-uncased': BertDetails,
        'bert-large-cased': BertDetails,
        'gpt2': GPT2Details,
        'gpt2-medium': GPT2Details,
        'gpt2-large': GPT2Details,
        'roberta-base': RobertaDetails,
        'roberta-large': RobertaDetails,
        'roberta-large-mnli': RobertaDetails,
        'roberta-base-openai-detector': RobertaDetails,
        'roberta-large-openai-detector': RobertaDetails,
        'distilbert-base-uncased': DistilBertDetails,
        'distilbert-base-uncased-distilled-squad': DistilBertDetails,
        'distilgpt2': GPT2Details,
        'distilroberta-base': RobertaDetails,
    }
    return cls_type[class_name]

@memoize
def from_pretrained(model_name):
    """Convert model name into appropriate transformer details"""
    try: out = get_cls(model_name).from_pretrained(model_name)
    except KeyError: raise KeyError(f"The model name of '{model_name}' either does not exist or is currently not supported")

    return out


class TransformerBaseDetails(ABC):
    """ All API calls will interact with this class to get the hidden states and attentions for any input sentence."""

    def __init__(self, model, aligner):
        self.model = model
        self.aligner = aligner
        self.model.eval()
        self.forward_inputs = ['input_ids', 'attention_mask']

    @classmethod
    def from_pretrained(cls, model_name: str):
        raise NotImplementedError(
            """Inherit from this class and specify the Model and Aligner to use"""
        )

    def att_from_sentence(self, s: str, mask_attentions=False) -> TransformerOutputFormatter:
        """Get formatted attention from a single sentence input"""
        tokens = self.aligner.tokenize(s)
        return self.att_from_tokens(tokens, s, add_special_tokens=True, mask_attentions=mask_attentions)

    def att_from_tokens(
        self, tokens: List[str], orig_sentence, add_special_tokens=False, mask_attentions=False
    ) -> TransformerOutputFormatter:
        """Get formatted attention from a list of tokens, using the original sentence for getting Spacy Metadata"""
        ids = self.aligner.convert_tokens_to_ids(tokens)

        # For GPT2, add the beginning of sentence token to the input. Note that this will work on all models but XLM
        bost = self.aligner.bos_token_id
        clst = self.aligner.cls_token_id
        if (bost is not None) and (bost != clst) and add_special_tokens:
            ids.insert(0, bost)

        inputs = self.aligner.prepare_for_model(ids, add_special_tokens=add_special_tokens, return_tensors="pt")
        parsed_input = self.format_model_input(inputs, mask_attentions=mask_attentions)
        output = self.model(parsed_input['input_ids'], attention_mask=parsed_input['attention_mask'])
        return self.format_model_output(inputs, orig_sentence, output)

    def format_model_output(self, inputs, sentence:str, output, topk=5):
        """Convert model output to the desired format.
        Formatter additionally needs access to the tokens and the original sentence
        """
        hidden_state, attentions, contexts, logits = self.select_outputs(output)

        words, probs = self.logits2words(logits, topk)

        tokens = self.view_ids(inputs["input_ids"])
        toks = self.aligner.meta_from_tokens(sentence, tokens, perform_check=False)

        formatted_output = TransformerOutputFormatter(
            sentence,
            toks,
            inputs["special_tokens_mask"],
            attentions,
            hidden_state,
            contexts,
            words,
            probs.tolist()
        )
        return formatted_output

    def select_outputs(self, output):
        """Extract the desired hidden states as passed by a particular model through the output
        In all cases, we care for:
            - hidden state embeddings (tuple of n_layers + 1)
            - attentions (tuple of n_layers)
            - contexts (tuple of n_layers)
            - Top predicted words
            - Probabilities of top predicted words
        """
        logits, hidden_state, attentions, contexts = output

        return hidden_state, attentions, contexts, logits

    def format_model_input(self, inputs, mask_attentions=False):
        """Parse the input for the model according to what is expected in the forward pass.
        If not otherwise defined, outputs a dict containing the keys:
        {'input_ids', 'attention_mask'}
        """
        return pick(self.forward_inputs, self.parse_inputs(inputs, mask_attentions=mask_attentions))

    def logits2words(self, logits, topk=5):
        probs, idxs = torch.topk(torch.softmax(logits.squeeze(0), 1), topk)
        words = [self.aligner.convert_ids_to_tokens(i) for i in idxs]
        return words, probs

    def view_ids(self, ids: Union[List[int], torch.Tensor]) -> List[str]:
        """View what the tokenizer thinks certain ids are"""
        if type(ids) == torch.Tensor:
            # Remove batch dimension
            ids = ids.squeeze(0).tolist()

        out = self.aligner.convert_ids_to_tokens(ids)
        return out

    def parse_inputs(self, inputs, mask_attentions=False):
        """Parse the output from `tokenizer.prepare_for_model` to the desired attention mask from special tokens
        Args:
            - inputs: The output of `tokenizer.prepare_for_model`.
                A dict with keys: {'special_token_mask', 'token_type_ids', 'input_ids'}
            - mask_attentions: Flag indicating whether to mask the attentions or not
        Returns:
            Dict with keys: {'input_ids', 'token_type_ids', 'attention_mask', 'special_tokens_mask'}
        Usage:
            ```
            s = "test sentence"
            # from raw sentence to tokens
            tokens = tokenizer.tokenize(s)
            # From tokens to ids
            ids = tokenizer.convert_tokens_to_ids(tokens)
            # From ids to input
            inputs = tokenizer.prepare_for_model(ids, return_tensors='pt')
            # Parse the input. Optionally mask the special tokens from the analysis.
            parsed_input = parse_inputs(inputs)
            # Run the model, pick from this output whatever inputs you want
            from utils.f import pick
            out = model(**pick(['input_ids'], parse_inputs(inputs)))
            ```
        """

        out = inputs.copy()

        # DEFINE SPECIAL TOKENS MASK
        if "special_tokens_mask" not in inputs.keys():
            special_tokens = set([self.aligner.unk_token_id, self.aligner.cls_token_id, self.aligner.sep_token_id, self.aligner.bos_token_id, self.aligner.eos_token_id, self.aligner.pad_token_id])
            in_ids = inputs['input_ids'][0]
            special_tok_mask = [1 if int(i) in special_tokens else 0 for i in in_ids]
            inputs['special_tokens_mask'] = special_tok_mask

        if mask_attentions:
            out["attention_mask"] = torch.tensor(
                [int(not i) for i in inputs.get("special_tokens_mask")]
            ).unsqueeze(0)
        else:
            out["attention_mask"] = torch.tensor(
                [1 for i in inputs.get("special_tokens_mask")]
            ).unsqueeze(0)

        return out


class BertDetails(TransformerBaseDetails):
    @classmethod
    def from_pretrained(cls, model_name: str):
        return cls(
            BertForMaskedLM.from_pretrained(
                model_name,
                output_attentions=True,
                output_hidden_states=True,
                output_additional_info=True,
            ),
            BertAligner.from_pretrained(model_name),
        )


class GPT2Details(TransformerBaseDetails):
    @classmethod
    def from_pretrained(cls, model_name: str):
        return cls(
            GPT2LMHeadModel.from_pretrained(
                model_name,
                output_attentions=True,
                output_hidden_states=True,
                output_additional_info=True,
            ),
            GPT2Aligner.from_pretrained(model_name),
        )

    def select_outputs(self, output):
        logits, _ , hidden_states, att, contexts = output
        return hidden_states, att, contexts, logits

class RobertaDetails(TransformerBaseDetails):

    @classmethod
    def from_pretrained(cls, model_name: str):
        return cls(
            RobertaForMaskedLM.from_pretrained(
                model_name,
                output_attentions=True,
                output_hidden_states=True,
                output_additional_info=True,
            ),
            RobertaAligner.from_pretrained(model_name),
        )

class DistilBertDetails(TransformerBaseDetails):
    def __init__(self, model, aligner):
        super().__init__(model, aligner)
        self.forward_inputs = ['input_ids', 'attention_mask']

    @classmethod
    def from_pretrained(cls, model_name: str):
        return cls(
            DistilBertForMaskedLM.from_pretrained(
                model_name,
                output_attentions=True,
                output_hidden_states=True,
                output_additional_info=True,
            ),
            DistilBertAligner.from_pretrained(model_name),
        )

    def select_outputs(self, output):
        """Extract the desired hidden states as passed by a particular model through the output
        In all cases, we care for:
            - hidden state embeddings (tuple of n_layers + 1)
            - attentions (tuple of n_layers)
            - contexts (tuple of n_layers)
        """
        logits, hidden_states, attentions, contexts = output

        contexts = tuple([c.permute(0, 2, 1, 3).contiguous() for c in contexts])
        return hidden_states, attentions, contexts, logits