File size: 698 Bytes
7646abb 2fd6d2b 7646abb fd1e84b 2fd6d2b fd1e84b 7646abb 2fd6d2b 7646abb fd1e84b 7646abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import whisper
import gradio as gr
# Load the Whisper model (you can change "base" to "small", "medium", or "large" depending on your needs)
model = whisper.load_model("base")
# Define the transcription function
def transcribe(audio_file):
# Transcribe the audio file using Whisper
result = model.transcribe(audio_file)
return result["text"]
# Gradio Interface for uploading audio and returning the transcription
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"), # Use 'filepath' to get the path to the uploaded file
outputs="text",
title="Whisper Transcription",
description="Upload an audio or video file to transcribe."
)
iface.launch()
|