Spaces:
Build error
Build error
File size: 5,823 Bytes
6755d15 58dedb9 6755d15 58dedb9 6755d15 58dedb9 6755d15 58dedb9 6755d15 58dedb9 6755d15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from utils import *
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import unicodedata
import re
import gradio
import json
import numpy as np
import pandas as pd
# Undesirable patterns within texts
patterns = {
'CONCLUSIONS AND IMPLICATIONS':'',
'BACKGROUND AND PURPOSE':'',
'EXPERIMENTAL APPROACH':'',
'KEY RESULTS AEA':'',
'©':'',
'®':'',
'μ':'',
'(C)':'',
'OBJECTIVE:':'',
'MATERIALS AND METHODS:':'',
'SIGNIFICANCE:':'',
'BACKGROUND:':'',
'RESULTS:':'',
'METHODS:':'',
'CONCLUSIONS:':'',
'AIM:':'',
'STUDY DESIGN:':'',
'CLINICAL RELEVANCE:':'',
'CONCLUSION:':'',
'HYPOTHESIS:':'',
'CLINICAL RELEVANCE:':'',
'Questions/Purposes:':'',
'Introduction:':'',
'PURPOSE:':'',
'PATIENTS AND METHODS:':'',
'FINDINGS:':'',
'INTERPRETATIONS:':'',
'FUNDING:':'',
'PROGRESS:':'',
'CONTEXT:':'',
'MEASURES:':'',
'DESIGN:':'',
'BACKGROUND AND OBJECTIVES:':'',
'<p>':'',
'</p>':'',
'<<ETX>>':'',
'+/-':'',
}
patterns = {x.lower():y for x,y in patterns.items()}
class treat_text:
def __init__(self, patterns):
self.patterns = patterns
def __call__(self,text):
text = unicodedata.normalize("NFKD",str(text))
text = multiple_replace(self.patterns,text.lower())
text = re.sub('(\(.+\))|(\[.+\])|( \d )|(<)|(>)|(- )','', text)
text = re.sub('( +)',' ', text)
text = re.sub('(, ,)|(,,)',',', text)
text = re.sub('(%)|(per cent)',' percent', text)
return text
# Regex multiple replace function
def multiple_replace(dict, text):
# Building regex from dict keys
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))
# Substitution
return regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], text)
treat_text_fun = treat_text(patterns)
import sys
sys.path.append('ML-SLRC/')
path = 'ML-SLRC/'
model_path = path + 'model.pt'
info_path = path + 'Info.json'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # carrega o modelo
model = torch.load(model_path)
# # carrega as meta informações do modelo treinado
with open(info_path, 'r') as f:
Info = json.load(f)
import random
from datetime import datetime
rand_seed = 2003
# datetime object containing current date and time
now = datetime.now()
time_stamp = now.strftime("%d_%m_%Y_HR_%H_%M_%S")
config = {
"shots_per_class":8,
"batch_size":4,
"epochs":8,
"learning_rate":5e-05,
"weight_decay": 0.85,
"rand_seed":rand_seed,
'pos_weight':3.5,
'p_incld': 0.2,
'p_excld': 0.01,
}
NAME = str(config['shots_per_class'])+'-shots-Learner' +'_'+ time_stamp
num_workers = 0
val_batch = 100
p_included = 0.7
p_notincluded = 0.3
sample_valid = 300
gen_seed = torch.Generator().manual_seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
random.seed(rand_seed)
def treat_data_input(data, etailment_txt):
data_train = data.groupby('test').sample(frac=1)
dataload_all = data.copy()
dataload_all.test = dataload_all.test.replace({np.nan: 'NANN'})
dataset_train = SLR_DataSet(data=data_train,
input= 'text',
output='test',
tokenizer= initializer_model_scibert.tokenizer,
LABEL_MAP=LABEL_MAP,
treat_text=treat_text_fun,
etailment_txt=etailment_txt)
dataset_remain = SLR_DataSet(data=dataload_all,
input= 'text',
output='test',
tokenizer= initializer_model_scibert.tokenizer,
LABEL_MAP=LABEL_MAP,
treat_text=treat_text_fun,
etailment_txt=etailment_txt)
dataload_train = DataLoader(dataset_train,
batch_size=config['batch_size'],drop_last=False,
num_workers=num_workers)
dataload_remain = DataLoader(dataset_remain,
batch_size=200,drop_last=False,
num_workers=num_workers)
return dataload_train, dataload_remain, dataload_all
import gc
from torch.optim import Adam
def treat_train_evaluate(dataload_train, dataload_remain):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
gc.collect()
torch.cuda.empty_cache()
model_few = deepcopy(model)
model_few.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
pos_weight=torch.FloatTensor([config['pos_weight']]))
optimizer = Adam(model_few.parameters(), lr = config['learning_rate'],
weight_decay = config['weight_decay'])
model_few.to(device)
model_few.train()
trainlog = model_few.fit(optimizer=optimizer,
scheduler = None,
data_train_loader=dataload_train,
epochs = config['epochs'], print_info = 1, metrics= False,
log = None, metrics_print = False)
(loss, features_out, (logits, outputs)) = model_few.evaluate(dataload_remain)
return logits
def treat_sort(dataload_all,logits):
dataload_all['prediction'] = torch.sigmoid(logits)
dataload_all = dataload_all.sort_values(by=['prediction'], ascending=False).reset_index(drop=True)
dataload_all.to_excel("output.xlsx")
def pipeline(data):
# data = pd.read_csv(fil.name)
data = pd.read_excel(data)
dataload_train, dataload_remain, dataload_all = treat_data_input(data,"its a great text")
logits = treat_train_evaluate(dataload_train, dataload_remain)
treat_sort(dataload_all,logits)
return "output.xlsx"
import gradio as gr
with gr.Blocks() as demo:
fil = gr.File(label="input data")
output = gr.File(label="output data")
greet_btn = gr.Button("Rank")
greet_btn.click(fn=pipeline, inputs=fil, outputs=output)
demo.launch() |