Spaces:
Runtime error
Runtime error
File size: 1,089 Bytes
098ba89 9496ed4 ea9feac 7079f36 142bb9b 7079f36 c5e39dc 22678e0 ea9feac a2aa870 098ba89 4e2c3ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import tensorflow as tf
import gradio as gr
from transformers import AutoTokenizer, pipeline, AutoModelForTokenClassification
#tokenizer = AutoTokenizer.from_pretrained("Battu007/1_Image_Classification")
#model = AutoModelForTokenClassification.from_pretrained("Battu007/1_Image_Classification")
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
model = tf.keras.models.load_model(r'/Model/')
def predict_image(opened_image):
img_array = tf.keras.utils.img_to_array(opened_image)
img_array = tf.expand_dims(img_array, 0) #Convert image to one empty batch -> Model was trained on batches
prediction = model.predict(img_array)
score = tf.nn.softmax(prediction[0])
return ("Class of Flower: " + str(class_names[np.argmax(score)]), "Confidence level: " + str(100 * np.max(score)))
gr.Interface(fn=predict_image,
inputs=gr.Image(shape=(180, 180)),
outputs=[gr.Label(num_top_classes=5), "text"],
examples=['1775233884_12ff5a124f.jpg', '40410814_fba3837226_n.jpg']).launch(share=True)
|