File size: 16,421 Bytes
e8aa256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...schedulers import DDPMWuerstchenScheduler
from ...utils import deprecate, replace_example_docstring
from ..pipeline_utils import DiffusionPipeline
from .modeling_paella_vq_model import PaellaVQModel
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt
from .modeling_wuerstchen_prior import WuerstchenPrior
from .pipeline_wuerstchen import WuerstchenDecoderPipeline
from .pipeline_wuerstchen_prior import WuerstchenPriorPipeline
TEXT2IMAGE_EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusions import WuerstchenCombinedPipeline
>>> pipe = WuerstchenCombinedPipeline.from_pretrained("warp-ai/Wuerstchen", torch_dtype=torch.float16).to(
... "cuda"
... )
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
>>> images = pipe(prompt=prompt)
```
"""
class WuerstchenCombinedPipeline(DiffusionPipeline):
"""
Combined Pipeline for text-to-image generation using Wuerstchen
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
tokenizer (`CLIPTokenizer`):
The decoder tokenizer to be used for text inputs.
text_encoder (`CLIPTextModel`):
The decoder text encoder to be used for text inputs.
decoder (`WuerstchenDiffNeXt`):
The decoder model to be used for decoder image generation pipeline.
scheduler (`DDPMWuerstchenScheduler`):
The scheduler to be used for decoder image generation pipeline.
vqgan (`PaellaVQModel`):
The VQGAN model to be used for decoder image generation pipeline.
prior_tokenizer (`CLIPTokenizer`):
The prior tokenizer to be used for text inputs.
prior_text_encoder (`CLIPTextModel`):
The prior text encoder to be used for text inputs.
prior_prior (`WuerstchenPrior`):
The prior model to be used for prior pipeline.
prior_scheduler (`DDPMWuerstchenScheduler`):
The scheduler to be used for prior pipeline.
"""
_load_connected_pipes = True
def __init__(
self,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
decoder: WuerstchenDiffNeXt,
scheduler: DDPMWuerstchenScheduler,
vqgan: PaellaVQModel,
prior_tokenizer: CLIPTokenizer,
prior_text_encoder: CLIPTextModel,
prior_prior: WuerstchenPrior,
prior_scheduler: DDPMWuerstchenScheduler,
):
super().__init__()
self.register_modules(
text_encoder=text_encoder,
tokenizer=tokenizer,
decoder=decoder,
scheduler=scheduler,
vqgan=vqgan,
prior_prior=prior_prior,
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
)
self.prior_pipe = WuerstchenPriorPipeline(
prior=prior_prior,
text_encoder=prior_text_encoder,
tokenizer=prior_tokenizer,
scheduler=prior_scheduler,
)
self.decoder_pipe = WuerstchenDecoderPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
decoder=decoder,
scheduler=scheduler,
vqgan=vqgan,
)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
"""
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
def progress_bar(self, iterable=None, total=None):
self.prior_pipe.progress_bar(iterable=iterable, total=total)
self.decoder_pipe.progress_bar(iterable=iterable, total=total)
def set_progress_bar_config(self, **kwargs):
self.prior_pipe.set_progress_bar_config(**kwargs)
self.decoder_pipe.set_progress_bar_config(**kwargs)
@torch.no_grad()
@replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: int = 512,
width: int = 512,
prior_num_inference_steps: int = 60,
prior_timesteps: Optional[List[float]] = None,
prior_guidance_scale: float = 4.0,
num_inference_steps: int = 12,
decoder_timesteps: Optional[List[float]] = None,
decoder_guidance_scale: float = 0.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"],
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation for the prior and decoder.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.*
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt`
input argument.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`prior_guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
`prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked
to the text `prompt`, usually at the expense of lower image quality.
prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60):
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. For more specific timestep spacing, you can pass customized
`prior_timesteps`
num_inference_steps (`int`, *optional*, defaults to 12):
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at
the expense of slower inference. For more specific timestep spacing, you can pass customized
`timesteps`
prior_timesteps (`List[float]`, *optional*):
Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced
`prior_num_inference_steps` timesteps are used. Must be in descending order.
decoder_timesteps (`List[float]`, *optional*):
Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced
`num_inference_steps` timesteps are used. Must be in descending order.
decoder_guidance_scale (`float`, *optional*, defaults to 0.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
prior_callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep:
int, callback_kwargs: Dict)`.
prior_callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in
the `._callback_tensor_inputs` attribute of your pipeline class.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True,
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
"""
prior_kwargs = {}
if kwargs.get("prior_callback", None) is not None:
prior_kwargs["callback"] = kwargs.pop("prior_callback")
deprecate(
"prior_callback",
"1.0.0",
"Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`",
)
if kwargs.get("prior_callback_steps", None) is not None:
deprecate(
"prior_callback_steps",
"1.0.0",
"Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`",
)
prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps")
prior_outputs = self.prior_pipe(
prompt=prompt if prompt_embeds is None else None,
height=height,
width=width,
num_inference_steps=prior_num_inference_steps,
timesteps=prior_timesteps,
guidance_scale=prior_guidance_scale,
negative_prompt=negative_prompt if negative_prompt_embeds is None else None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
latents=latents,
output_type="pt",
return_dict=False,
callback_on_step_end=prior_callback_on_step_end,
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs,
**prior_kwargs,
)
image_embeddings = prior_outputs[0]
outputs = self.decoder_pipe(
image_embeddings=image_embeddings,
prompt=prompt if prompt is not None else "",
num_inference_steps=num_inference_steps,
timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type=output_type,
return_dict=return_dict,
callback_on_step_end=callback_on_step_end,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
**kwargs,
)
return outputs
|