File size: 16,809 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional

import torch
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock, TemporalBasicTransformerBlock
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .resnet import AlphaBlender


@dataclass
class TransformerTemporalModelOutput(BaseOutput):
    """
    The output of [`TransformerTemporalModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input.
    """

    sample: torch.FloatTensor


class TransformerTemporalModel(ModelMixin, ConfigMixin):
    """
    A Transformer model for video-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlock` attention should contain a bias parameter.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        activation_fn (`str`, *optional*, defaults to `"geglu"`):
            Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
            activation functions.
        norm_elementwise_affine (`bool`, *optional*):
            Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
        double_self_attention (`bool`, *optional*):
            Configure if each `TransformerBlock` should contain two self-attention layers.
        positional_embeddings: (`str`, *optional*):
            The type of positional embeddings to apply to the sequence input before passing use.
        num_positional_embeddings: (`int`, *optional*):
            The maximum length of the sequence over which to apply positional embeddings.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        activation_fn: str = "geglu",
        norm_elementwise_affine: bool = True,
        double_self_attention: bool = True,
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    double_self_attention=double_self_attention,
                    norm_elementwise_affine=norm_elementwise_affine,
                    positional_embeddings=positional_embeddings,
                    num_positional_embeddings=num_positional_embeddings,
                )
                for d in range(num_layers)
            ]
        )

        self.proj_out = nn.Linear(inner_dim, in_channels)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.LongTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: torch.LongTensor = None,
        num_frames: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> TransformerTemporalModelOutput:
        """
        The [`TransformerTemporal`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input hidden_states.
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            num_frames (`int`, *optional*, defaults to 1):
                The number of frames to be processed per batch. This is used to reshape the hidden states.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
                returned, otherwise a `tuple` where the first element is the sample tensor.
        """
        # 1. Input
        batch_frames, channel, height, width = hidden_states.shape
        batch_size = batch_frames // num_frames

        residual = hidden_states

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
        hidden_states = hidden_states.permute(0, 2, 1, 3, 4)

        hidden_states = self.norm(hidden_states)
        hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)

        hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
            )

        # 3. Output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states[None, None, :]
            .reshape(batch_size, height, width, num_frames, channel)
            .permute(0, 3, 4, 1, 2)
            .contiguous()
        )
        hidden_states = hidden_states.reshape(batch_frames, channel, height, width)

        output = hidden_states + residual

        if not return_dict:
            return (output,)

        return TransformerTemporalModelOutput(sample=output)


class TransformerSpatioTemporalModel(nn.Module):
    """
    A Transformer model for video-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        out_channels (`int`, *optional*):
            The number of channels in the output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: int = 320,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim

        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim

        # 2. Define input layers
        self.in_channels = in_channels
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                )
                for d in range(num_layers)
            ]
        )

        time_mix_inner_dim = inner_dim
        self.temporal_transformer_blocks = nn.ModuleList(
            [
                TemporalBasicTransformerBlock(
                    inner_dim,
                    time_mix_inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                )
                for _ in range(num_layers)
            ]
        )

        time_embed_dim = in_channels * 4
        self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels)
        self.time_proj = Timesteps(in_channels, True, 0)
        self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images")

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        # TODO: should use out_channels for continuous projections
        self.proj_out = nn.Linear(inner_dim, in_channels)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input hidden_states.
            num_frames (`int`):
                The number of frames to be processed per batch. This is used to reshape the hidden states.
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*):
                A tensor indicating whether the input contains only images. 1 indicates that the input contains only
                images, 0 indicates that the input contains video frames.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
                returned, otherwise a `tuple` where the first element is the sample tensor.
        """
        # 1. Input
        batch_frames, _, height, width = hidden_states.shape
        num_frames = image_only_indicator.shape[-1]
        batch_size = batch_frames // num_frames

        time_context = encoder_hidden_states
        time_context_first_timestep = time_context[None, :].reshape(
            batch_size, num_frames, -1, time_context.shape[-1]
        )[:, 0]
        time_context = time_context_first_timestep[None, :].broadcast_to(
            height * width, batch_size, 1, time_context.shape[-1]
        )
        time_context = time_context.reshape(height * width * batch_size, 1, time_context.shape[-1])

        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim)
        hidden_states = self.proj_in(hidden_states)

        num_frames_emb = torch.arange(num_frames, device=hidden_states.device)
        num_frames_emb = num_frames_emb.repeat(batch_size, 1)
        num_frames_emb = num_frames_emb.reshape(-1)
        t_emb = self.time_proj(num_frames_emb)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=hidden_states.dtype)

        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        # 2. Blocks
        for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks):
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    block,
                    hidden_states,
                    None,
                    encoder_hidden_states,
                    None,
                    use_reentrant=False,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                )

            hidden_states_mix = hidden_states
            hidden_states_mix = hidden_states_mix + emb

            hidden_states_mix = temporal_block(
                hidden_states_mix,
                num_frames=num_frames,
                encoder_hidden_states=time_context,
            )
            hidden_states = self.time_mixer(
                x_spatial=hidden_states,
                x_temporal=hidden_states_mix,
                image_only_indicator=image_only_indicator,
            )

        # 3. Output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual

        if not return_dict:
            return (output,)

        return TransformerTemporalModelOutput(sample=output)