File size: 29,208 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter

import torch
import datetime
import numpy as np
import uuid
from pipeline.pipeline_svd_DragAnything import StableVideoDiffusionPipeline
from models.DragAnything import DragAnythingSDVModel
from models.unet_spatio_temporal_condition_controlnet import UNetSpatioTemporalConditionControlNetModel
import cv2
import re 
from scipy.ndimage import distance_transform_edt
import torchvision.transforms as T
import torch.nn.functional as F
from utils.dift_util import DIFT_Demo, SDFeaturizer
from torchvision.transforms import PILToTensor
import json
from utils_drag import *
from scipy.interpolate import interp1d, PchipInterpolator
from segment_anything import sam_model_registry, SamPredictor
import imageio
from moviepy.editor import *

print("gr file",gr.__file__)

color_list = []
for i in range(20):
    color = np.concatenate([np.random.random(4)*255], axis=0)
    color_list.append(color)



output_dir = "./outputs"
ensure_dirname(output_dir)


# SAM
sam_checkpoint = "./script/sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)

predictor = SamPredictor(sam)

def get_dift_ID(feature_map,mask):
        
#     feature_map = feature_map * 0
    
    new_feature = []
    non_zero_coordinates = np.column_stack(np.where(mask != 0))
    for coord in non_zero_coordinates:
#         feature_map[:, coord[0], coord[1]] = 1
        new_feature.append(feature_map[:, coord[0], coord[1]])
    
    stacked_tensor = torch.stack(new_feature, dim=0)
    # 在维度0上进行平均池化
    average_pooled_tensor = torch.mean(stacked_tensor, dim=0)

    return average_pooled_tensor

def interpolate_trajectory(points, n_points):
    x = [point[0] for point in points]
    y = [point[1] for point in points]

    t = np.linspace(0, 1, len(points))

    # fx = interp1d(t, x, kind='cubic')
    # fy = interp1d(t, y, kind='cubic')
    fx = PchipInterpolator(t, x)
    fy = PchipInterpolator(t, y)

    new_t = np.linspace(0, 1, n_points)

    new_x = fx(new_t)
    new_y = fy(new_t)
    new_points = list(zip(new_x, new_y))

    return new_points

def visualize_drag_v2(background_image_path, splited_tracks, width, height):
    trajectory_maps = []
    
    background_image = Image.open(background_image_path).convert('RGBA')
    background_image = background_image.resize((width, height))
    w, h = background_image.size
    transparent_background = np.array(background_image)
    transparent_background[:, :, -1] = 128
    transparent_background = Image.fromarray(transparent_background)

    # Create a transparent layer with the same size as the background image
    transparent_layer = np.zeros((h, w, 4))
    for splited_track in splited_tracks:
        if len(splited_track) > 1:
            splited_track = interpolate_trajectory(splited_track, 16)
            splited_track = splited_track[:16]
            for i in range(len(splited_track)-1):
                start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
                end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(splited_track)-2:
                    cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
                else:
                    cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
        else:
            cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 5, (255, 0, 0, 192), -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    trajectory_maps.append(trajectory_map)
    return trajectory_maps, transparent_layer

def gen_gaussian_heatmap(imgSize=200):
    circle_img = np.zeros((imgSize, imgSize), np.float32)
    circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)

    isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)

    for i in range(imgSize):
        for j in range(imgSize):
            isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
                -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))

    isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)

    return isotropicGrayscaleImage

def extract_dift_feature(image, dift_model):
    if isinstance(image, Image.Image):
        image = image
    else:
        image = Image.open(image).convert('RGB')
           
    prompt = ''
    img_tensor = (PILToTensor()(image) / 255.0 - 0.5) * 2
    dift_feature = dift_model.forward(img_tensor, prompt=prompt, up_ft_index=3,ensemble_size=8)
    return dift_feature

def get_condition(target_size=(512 , 512), points=None, original_size=(512 , 512), args="", first_frame=None, is_mask = False, side=20,model_id=None):
    images = []
    vis_images = []
    heatmap = gen_gaussian_heatmap()
    
    original_size = (original_size[1],original_size[0])
    size = (target_size[1],target_size[0])
    latent_size = (int(target_size[1]/8), int(target_size[0]/8))
    
    
    dift_model = SDFeaturizer(sd_id=model_id)
    keyframe_dift = extract_dift_feature(first_frame, dift_model=dift_model)
    
    ID_images=[]
    ids_list={}

    mask_list = []
    trajectory_list = []
    radius_list = []
    
    for index,point in enumerate(points):
        mask_name = output_dir+"/"+"mask_{}.jpg".format(index+1)
        trajectories = [[int(i[0]),int(i[1])] for i in point]
        trajectory_list.append(trajectories)
        
        first_mask = (cv2.imread(mask_name)/255).astype(np.uint8)
        first_mask = cv2.cvtColor(first_mask.astype(np.uint8), cv2.COLOR_RGB2GRAY)
        mask_list.append(first_mask)
        
        mask_322 = cv2.resize(first_mask.astype(np.uint8),(int(target_size[1]), int(target_size[0])))
        _, radius = find_largest_inner_rectangle_coordinates(mask_322)
        radius_list.append(radius)    
    

    for idxx,point in enumerate(trajectory_list[0]):
        new_img = np.zeros(target_size, np.uint8)
        vis_img = new_img.copy()
        ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
        
        if idxx>= args["frame_number"]:
            break
            
        for cc,(mask,trajectory,radius) in enumerate(zip(mask_list,trajectory_list,radius_list)):
            
            center_coordinate = trajectory[idxx]
            trajectory_ = trajectory[:idxx]
            side = min(radius,50)

            # ID embedding
            if idxx == 0:
                # diffusion feature
                mask_32 = cv2.resize(mask.astype(np.uint8),latent_size)
                if len(np.column_stack(np.where(mask_32 != 0)))==0:
                    continue
                ids_list[cc] = get_dift_ID(keyframe_dift[0],mask_32)

                id_feature = ids_list[cc]
            else:
                id_feature = ids_list[cc]

            circle_img = np.zeros((target_size[0], target_size[1]), np.float32)
            circle_mask = cv2.circle(circle_img, (center_coordinate[0],center_coordinate[1]), side, 1, -1)
                      
            y1 = max(center_coordinate[1]-side,0)
            y2 = min(center_coordinate[1]+side,target_size[0]-1)
            x1 = max(center_coordinate[0]-side,0)
            x2 = min(center_coordinate[0]+side,target_size[1]-1)
            
            if x2-x1>3 and y2-y1>3:
                need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
                new_img[y1:y2,x1:x2] = need_map.copy()
                
                if cc>=0:
                    vis_img[y1:y2,x1:x2] = need_map.copy()
                    if len(trajectory_) == 1:
                        vis_img[trajectory_[0][1],trajectory_[0][0]] = 255
                    else:
                        for itt in range(len(trajectory_)-1):
                            cv2.line(vis_img,(trajectory_[itt][0],trajectory_[itt][1]),(trajectory_[itt+1][0],trajectory_[itt+1][1]),(255,255,255),3)

            non_zero_coordinates = np.column_stack(np.where(circle_mask != 0))
            for coord in non_zero_coordinates:
                ids_embedding[coord[0], coord[1]] = id_feature[0]
        
        ids_embedding = F.avg_pool1d(ids_embedding, kernel_size=2, stride=2)
        img = new_img

        # Ensure all images are in RGB format
        if len(img.shape) == 2:  # Grayscale image
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
            vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB)
        elif len(img.shape) == 3 and img.shape[2] == 3:  # Color image in BGR format
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
            
        # Convert the numpy array to a PIL image
        pil_img = Image.fromarray(img)
        images.append(pil_img)
        vis_images.append(Image.fromarray(vis_img))
        ID_images.append(ids_embedding)
    return images,ID_images,vis_images

def find_largest_inner_rectangle_coordinates(mask_gray):

    refine_dist = cv2.distanceTransform(mask_gray.astype(np.uint8), cv2.DIST_L2, 5, cv2.DIST_LABEL_PIXEL)
    _, maxVal, _, maxLoc = cv2.minMaxLoc(refine_dist)
    radius = int(maxVal)

    return maxLoc, radius

def save_gifs_side_by_side(batch_output, validation_control_images,output_folder,name = 'none', target_size=(512 , 512),duration=200):

    flattened_batch_output = batch_output
    def create_gif(image_list, gif_path, duration=100):
        pil_images = [validate_and_convert_image(img,target_size=target_size) for img in image_list]
        pil_images = [img for img in pil_images if img is not None]
        if pil_images:
            pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], loop=0, duration=duration)

    # Creating GIFs for each image list
    timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    gif_paths = []
    
#     validation_control_images = validation_control_images*255 validation_images, 
    for idx, image_list in enumerate([validation_control_images, flattened_batch_output]):
        
#         if idx==0:
#             continue

        gif_path = os.path.join(output_folder.replace("vis_gif.gif",""), f"temp_{idx}_{timestamp}.gif")
        create_gif(image_list, gif_path)
        gif_paths.append(gif_path)

    # Function to combine GIFs side by side
    def combine_gifs_side_by_side(gif_paths, output_path):
        print(gif_paths)
        gifs = [Image.open(gif) for gif in gif_paths]

        # Assuming all gifs have the same frame count and duration
        frames = []
        for frame_idx in range(gifs[0].n_frames):
            combined_frame = None
            
                
            for gif in gifs:
                
                gif.seek(frame_idx)
                if combined_frame is None:
                    combined_frame = gif.copy()
                else:
                    combined_frame = get_concat_h(combined_frame, gif.copy())
            frames.append(combined_frame)
        print(gifs[0].info['duration'])
        frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
        

    # Helper function to concatenate images horizontally
    def get_concat_h(im1, im2):
        dst = Image.new('RGB', (im1.width + im2.width, max(im1.height, im2.height)))
        dst.paste(im1, (0, 0))
        dst.paste(im2, (im1.width, 0))
        return dst

    # Combine the GIFs into a single file
    combined_gif_path = output_folder
    combine_gifs_side_by_side(gif_paths, combined_gif_path)

    # Clean up temporary GIFs
    for gif_path in gif_paths:
        os.remove(gif_path)

    return combined_gif_path

# Define functions
def validate_and_convert_image(image, target_size=(512 , 512)):
    if image is None:
        print("Encountered a None image")
        return None

    if isinstance(image, torch.Tensor):
        # Convert PyTorch tensor to PIL Image
        if image.ndim == 3 and image.shape[0] in [1, 3]:  # Check for CxHxW format
            if image.shape[0] == 1:  # Convert single-channel grayscale to RGB
                image = image.repeat(3, 1, 1)
            image = image.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
            image = Image.fromarray(image)
        else:
            print(f"Invalid image tensor shape: {image.shape}")
            return None
    elif isinstance(image, Image.Image):
        # Resize PIL Image
        image = image.resize(target_size)
    else:
        print("Image is not a PIL Image or a PyTorch tensor")
        return None
    
    return image

class Drag:
    def __init__(self, device, args, height, width, model_length):
        self.device = device

        self.controlnet = controlnet = DragAnythingSDVModel.from_pretrained(args["DragAnything"])
        unet = UNetSpatioTemporalConditionControlNetModel.from_pretrained(args["pretrained_model_name_or_path"],subfolder="unet")
        self.pipeline = StableVideoDiffusionPipeline.from_pretrained(args["pretrained_model_name_or_path"],controlnet=self.controlnet,unet=unet)
        self.pipeline.enable_model_cpu_offload()

        self.height = height
        self.width = width
        self.args = args
        self.model_length = model_length


    def run(self, first_frame_path, tracking_points, inference_batch_size, motion_bucket_id):
        original_width, original_height=576, 320

        input_all_points = tracking_points.constructor_args['value']
        resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
        
        input_drag = torch.zeros(self.model_length - 1, self.height, self.width, 2)
        for idx,splited_track in enumerate(resized_all_points):
            if len(splited_track) == 1: # stationary point
                displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
                splited_track = tuple([splited_track[0], displacement_point])
            # interpolate the track
            splited_track = interpolate_trajectory(splited_track, self.model_length)
            splited_track = splited_track[:self.model_length]
            resized_all_points[idx]=splited_track
        
        validation_image = Image.open(first_frame_path).convert('RGB')
        width, height = validation_image.size
        validation_image = validation_image.resize((self.width, self.height))
        validation_control_images,ids_embedding,vis_images = get_condition(target_size=(self.args["height"] , self.args["width"]),points = resized_all_points,
                                                                       original_size=(self.height , self.width),
                                                                       args = self.args,first_frame = validation_image,
                                                                      side=100,model_id=args["model_DIFT"])
        ids_embedding = torch.stack(ids_embedding, dim=0).permute(0, 3, 1, 2)
        
        # Inference and saving loop
        video_frames = self.pipeline(validation_image, validation_control_images[:self.model_length], decode_chunk_size=8,num_frames=self.model_length,motion_bucket_id=motion_bucket_id,controlnet_cond_scale=1.0,height=self.height,width=self.width,ids_embedding=ids_embedding[:self.model_length]).frames
        
        vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
        vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
    
        vis_images = [Image.fromarray(img) for img in vis_images]
    
        video_frames = [img for sublist in video_frames for img in sublist]
        val_save_dir = output_dir+"/"+"vis_gif.gif"
        save_gifs_side_by_side(video_frames, vis_images[:self.model_length],val_save_dir,target_size=(self.width,self.height),duration=110)
#         clip = Image.open(val_save_dir)
#         print(clip.size)
        return val_save_dir

args = {
        "pretrained_model_name_or_path": "stabilityai/stable-video-diffusion-img2vid",
        "DragAnything":"./model_out/DragAnything",
        "model_DIFT":"./utils/pretrained_models/chilloutmix",
        
        "validation_image": "./validation_demo/Demo/ship_@",
        
        "output_dir": "./validation_demo",
        "height":   320,
        "width":  576,
        
        "frame_number": 14
        # cant be bothered to add the args in myself, just use notepad
    }

with gr.Blocks() as demo:
    gr.Markdown("""<h1 align="center">DragAnything 1.0</h1><br>""")

    gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2403.07420'><b>DragAnything: Motion Control for Anything using Entity Representation</b></a>. The template is inspired by DragNUWA.""")

    gr.Image(label="DragAnything", value="assets/output.gif")

    gr.Markdown("""## Usage: <br>
                1. Upload an image via the "Upload Image" button.<br>
                2. Draw some drags.<br>
                    2.1. Click "Select Area with SAM" to select the area that you want to control.<br>
                    2.2. Click "Add Drag Trajectory" to add the motion trajectory.<br>
                    2.3. You can click several points which forms a path.<br>
                    2.4. Click "Delete last drag" to delete the whole lastest path.<br>
                    2.5. Click "Delete last step" to delete the lastest clicked control point.<br>
                3. Animate the image according the path with a click on "Run" button. <br>""")
    
#     device, args, height, width, model_length
    
    DragAnything = Drag("cuda:0", args, 320, 576, 14)
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    
    flag_points = gr.State()
    
    def reset_states(first_frame_path, tracking_points):
        first_frame_path = gr.State()
        tracking_points = gr.State([])
        return first_frame_path, tracking_points

    def preprocess_image(image):

        image_pil = image2pil(image.name)
        
            
        raw_w, raw_h = image_pil.size
        resize_ratio = max(576/raw_w, 320/raw_h)
        image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
        image_pil = transforms.CenterCrop((320, 576))(image_pil.convert('RGB'))

        first_frame_path = os.path.join(output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
        
        image_pil.save(first_frame_path)

        return first_frame_path, first_frame_path, gr.State([])

    def add_drag(tracking_points):
        tracking_points.constructor_args['value'].append([])
        return tracking_points,0
        
    def re_add_drag(tracking_points):
        tracking_points.constructor_args['value'][-1]=[]
        return tracking_points,1
    
    
    def delete_last_drag(tracking_points, first_frame_path):
        tracking_points.constructor_args['value'].pop()
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))
        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        return tracking_points, trajectory_map
    
    def delete_last_step(tracking_points, first_frame_path):
        tracking_points.constructor_args['value'][-1].pop()
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))
        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        return tracking_points, trajectory_map
    
    def add_tracking_points(tracking_points, first_frame_path, flag_points, evt: gr.SelectData):  # SelectData is a subclass of EventData
        print(f"You selected {evt.value} at {evt.index} from {evt.target}")
        tracking_points.constructor_args['value'][-1].append(evt.index)
        
        if flag_points==1:
            transparent_background = Image.open(first_frame_path).convert('RGBA')
            
            
            w, h = transparent_background.size
            transparent_layer = 0
            for idx,track in enumerate(tracking_points.constructor_args['value']):
                mask = cv2.imread(output_dir+"/"+"mask_{}.jpg".format(idx+1))
                color = color_list[idx+1]
                transparent_layer =  mask[:,:,0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
            
                if len(track) > 1:
                    for i in range(len(track)-1):
                        start_point = track[i]
                        end_point = track[i+1]
                        vx = end_point[0] - start_point[0]
                        vy = end_point[1] - start_point[1]
                        arrow_length = np.sqrt(vx**2 + vy**2)
                        if i == len(track)-2:
                            cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                        else:
                            cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
                else:
                    cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
            transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
            alpha_coef = 0.99
            im2_data = transparent_layer.getdata()
            new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
            transparent_layer.putdata(new_im2_data)
                
            trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        else:
            transparent_background = Image.open(first_frame_path).convert('RGBA')
            w, h = transparent_background.size
            
            
            input_point = []
            input_label = []
            for track in tracking_points.constructor_args['value'][-1]:
                input_point.append([track[0],track[1]])
                input_label.append(1)
            image = cv2.imread(first_frame_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            predictor.set_image(image)
            

            input_point = np.array(input_point)
            input_label = np.array(input_label)

            masks, scores, logits = predictor.predict(
                point_coords=input_point,
                point_labels=input_label,
                multimask_output=True,
            )
            cv2.imwrite(output_dir+"/"+"mask_{}.jpg".format(len(tracking_points.constructor_args['value'])),masks[1]*255)
            
            
            color = color_list[len(tracking_points.constructor_args['value'])]
            transparent_layer =  masks[1].reshape(h, w, 1) * color.reshape(1, 1, -1)
            
            transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
            alpha_coef = 0.99
            im2_data = transparent_layer.getdata()
            new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
            transparent_layer.putdata(new_im2_data)
            
#             transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
            trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        return tracking_points, trajectory_map

    with gr.Row():
        with gr.Column(scale=1):
            image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
            select_area_button = gr.Button(value="Select Area with SAM")
            add_drag_button = gr.Button(value="Add New Drag Trajectory")
            reset_button = gr.Button(value="Reset")
            run_button = gr.Button(value="Run")
            delete_last_drag_button = gr.Button(value="Delete last drag")
            delete_last_step_button = gr.Button(value="Delete last step")

        with gr.Column(scale=7):
            with gr.Row():
                with gr.Column(scale=6):
                    input_image = gr.Image(label="SAM mask",
                                        interactive=True,
                                        height=320,
                                        width=576,)
    
    with gr.Row():
        with gr.Column(scale=1):
            inference_batch_size = gr.Slider(label='Inference Batch Size', 
                                             minimum=1, 
                                             maximum=1, 
                                             step=1, 
                                             value=1)
            
            motion_bucket_id = gr.Slider(label='Motion Bucket', 
                                             minimum=1, 
                                             maximum=180, 
                                             step=1, 
                                             value=100)

        with gr.Column(scale=5):
            output_video =  gr.Image(label="Output Video",
                                    height=320,
                                    width=1152,)

    with gr.Row():
        gr.Markdown("""
            ## Citation
            ```bibtex
            @article{wu2024draganything,
              title={DragAnything: Motion Control for Anything using Entity Representation},
              author={Wu, Wejia and Li, Zhuang and Gu, Yuchao and Zhao, Rui and He, Yefei and Zhang, David Junhao and Shou, Mike Zheng and Li, Yan and Gao, Tingting and Zhang, Di},
              journal={arXiv preprint arXiv:2403.07420},
              year={2024}
            }
            ```
            """)
    
    print("debug 1")
            
    image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
    
    select_area_button.click(add_drag, tracking_points, [tracking_points,flag_points])
    
    add_drag_button.click(re_add_drag, tracking_points, [tracking_points,flag_points])
    
    delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path], [tracking_points, input_image])

    delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path], [tracking_points, input_image])

    reset_button.click(reset_states, [first_frame_path, tracking_points], [first_frame_path, tracking_points])

    input_image.select(add_tracking_points, [tracking_points, first_frame_path,flag_points], [tracking_points, input_image])

    run_button.click(DragAnything.run, [first_frame_path, tracking_points, inference_batch_size, motion_bucket_id], output_video)

    demo.queue().launch(server_name="0.0.0.0",share=True)
#     demo.launch(server_name="0.0.0.0",share=True)