File size: 16,461 Bytes
e8aa256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os, io, csv, math, random
import numpy as np
from einops import rearrange
import torch
from decord import VideoReader
import cv2
from scipy.ndimage import distance_transform_edt
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
# from utils.util import zero_rank_print
#from torchvision.io import read_image
from PIL import Image
import torchvision.transforms as T
import torch.nn.functional as F
def pil_image_to_numpy(image, is_maks = False, index = 1,size=256):
"""Convert a PIL image to a NumPy array."""
if is_maks:
image = image.resize((size, size))
# image = (np.array(image)==index)*1
# image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_GRAY2RGB)
return np.array(image)
else:
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize((size, size))
return np.array(image)
def numpy_to_pt(images: np.ndarray, is_mask=False) -> torch.FloatTensor:
"""Convert a NumPy image to a PyTorch tensor."""
if images.ndim == 3:
images = images[..., None]
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
if is_mask:
return images.float()
else:
return images.float() / 255
def find_largest_inner_rectangle_coordinates(mask_gray):
refine_dist = cv2.distanceTransform(mask_gray.astype(np.uint8), cv2.DIST_L2, 5, cv2.DIST_LABEL_PIXEL)
_, maxVal, _, maxLoc = cv2.minMaxLoc(refine_dist)
radius = int(maxVal)
return maxLoc, radius
# def find_largest_inner_rectangle_coordinates(mask_gray):
# # 识别轮廓
# contours, _ = cv2.findContours(mask_gray.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# xx,yy,ww,hh = 0,0,0,0
# contours_r = contours[0]
# for contour in contours:
# x, y, w, h = cv2.boundingRect(contour)
# if w*h > ww*hh:
# xx,yy,ww,hh = x, y, w, h
# contours_r = contour
# # 计算到轮廓的距离
# raw_dist = np.empty(mask_gray.shape, dtype=np.float32)
# for i in range(mask_gray.shape[0]):
# for j in range(mask_gray.shape[1]):
# raw_dist[i, j] = cv2.pointPolygonTest(contours_r, (j, i), True)
# # 获取最大值即内接圆半径,中心点坐标
# minVal, maxVal, _, maxDistPt = cv2.minMaxLoc(raw_dist)
# minVal = abs(minVal)
# maxVal = abs(maxVal)
# return maxDistPt, int(maxVal)
class YoutubeVos(Dataset):
def __init__(
self,video_folder,ann_folder,feature_folder,
sample_size=512, sample_stride=4, sample_n_frames=14,
):
self.dataset = [i.replace(".pth","") for i in os.listdir(feature_folder)]
self.length = len(self.dataset)
print(f"data scale: {self.length}")
random.shuffle(self.dataset)
self.video_folder = video_folder
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.ann_folder = ann_folder
self.heatmap = self.gen_gaussian_heatmap()
self.feature_folder=feature_folder
self.sample_size = sample_size
print("length",len(self.dataset))
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
print("sample size",sample_size)
def center_crop(self,img):
h, w = img.shape[-2:] # Assuming img shape is [C, H, W] or [B, C, H, W]
min_dim = min(h, w)
top = (h - min_dim) // 2
left = (w - min_dim) // 2
return img[..., top:top+min_dim, left:left+min_dim]
def gen_gaussian_heatmap(self,imgSize=200):
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
# Guass Map
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
return isotropicGrayscaleImage
def calculate_center_coordinates(self, numpy_images, masks, ids, feature_images,side=20):
center_coordinates = []
ids_embedding_list = []
ids_list = {}
for index_mask, mask in enumerate(masks):
new_img = np.zeros((self.sample_size, self.sample_size), np.float32)
ids_embedding = torch.zeros((self.sample_size, self.sample_size, 320))
# print(index_mask) 1024 576
for index in ids:
mask_array = (np.array(mask)==index)*1
mask_32 = cv2.resize(mask_array.astype(np.uint8),(int(self.sample_size/8),int(self.sample_size/8)))
if len(np.column_stack(np.where(mask_32 != 0)))==0:
continue
try:
feature_image = feature_images[index]
except:
# print(feature_images.keys())
# print("KeyError: {}".format(index))
continue
# 找到最大距离的索引
try:
center_coordinate,radius = find_largest_inner_rectangle_coordinates(mask_array)
side = int(radius)
except:
print("find_largest_inner_rectangle_coordinates error")
continue
x1 = max(center_coordinate[0]-side,1)
x2 = min(center_coordinate[0]+side,self.sample_size-1)
y1 = max(center_coordinate[1]-side,1)
y2 = min(center_coordinate[1]+side,self.sample_size-1)
if x2-x1<5 or y2-y1<5:
continue
need_map = cv2.resize(self.heatmap, (x2-x1, y2-y1))
new_img[y1:y2,x1:x2] = need_map
if side>300:
print("radius is too large")
continue
circle_img = np.zeros((self.sample_size, self.sample_size), np.float32)
# try:
circle_mask = cv2.circle(circle_img, (max(center_coordinate[0],1),min(center_coordinate[1],self.sample_size-1)), side, 1, -1)
# except:
# print((max(center_coordinate[0],1),min(center_coordinate[1],self.sample_size-1)), side)
# 获取非零像素的坐标
non_zero_coordinates = np.column_stack(np.where(circle_mask != 0))
for coord in non_zero_coordinates:
ids_embedding[coord[0], coord[1]] = feature_image
# ID embedding
# if index_mask == 0:
# ids_list[index] = self.get_ID(numpy_images,mask_array)
# 使用平均池化在第三个维度上进行池化,将大小减半
ids_embedding = F.avg_pool1d(ids_embedding, kernel_size=2, stride=2)
new_img = cv2.cvtColor(new_img.astype(np.uint8), cv2.COLOR_GRAY2RGB)
center_coordinates.append(new_img)
ids_embedding_list.append(ids_embedding)
return center_coordinates,ids_embedding_list
def get_ID(self,images_list,masks_list):
ID_images = []
image = images_list[0]
mask = masks_list
# 使用 findContours 函数找到轮廓
try:
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
mask = cv2.cvtColor(mask.astype(np.uint8), cv2.COLOR_GRAY2RGB)
image = image * mask
image = image[y:y+h,x:x+w]
except:
pass
print("cv2.findContours error")
# image = cv2.resize(image, (196, 196))
image = Image.fromarray(image).convert('RGB')
image = self.idtransform(image).unsqueeze(0).to(dtype=torch.float16)
image.to(self.device)
# cls_token = self.dinov2(image, is_training=False)
print(cls_token.shape)
assert False
# for i,m in zip(images_list,masks_list):
# # image = self.idtransform(Image.fromarray(image))
# # cv2.imwrite("./vis/test.jpg", image)
# ID_images.append(image)
return ID_images
def get_batch(self, idx):
def sort_frames(frame_name):
return int(frame_name.split('.')[0])
while True:
videoid = self.dataset[idx]
# videoid = video_dict['videoid']
preprocessed_dir = os.path.join(self.video_folder, videoid)
ann_folder = os.path.join(self.ann_folder, videoid)
feature_folder_file = os.path.join(self.feature_folder, videoid+".pth")
if not os.path.exists(ann_folder):
idx = random.randint(0, len(self.dataset) - 1)
print("os.path.exists({}), error".format(ann_folder))
continue
if not os.path.exists(feature_folder_file):
idx = random.randint(0, len(self.dataset) - 1)
print("os.path.exists({}), error".format(feature_folder_file))
continue
# Sort and limit the number of image and depth files to 14
image_files = sorted(os.listdir(preprocessed_dir), key=sort_frames)[:self.sample_n_frames]
depth_files = sorted(os.listdir(ann_folder), key=sort_frames)[:self.sample_n_frames]
# feature_file = sorted(os.listdir(feature_folder_file), key=sort_frames)[:self.sample_n_frames]
# Load image frames
numpy_images = np.array([pil_image_to_numpy(Image.open(os.path.join(preprocessed_dir, img)),size=self.sample_size) for img in image_files])
pixel_values = numpy_to_pt(numpy_images)
# Load feature frames
feature_images = torch.load(feature_folder_file, map_location='cpu')
# feature_images = np.array([np.array(torch.load(os.path.join(feature_folder_file, img))) for img in feature_file])
# feature_images = torch.tensor(feature_images).permute(0, 3, 1, 2)
# Load mask frames
mask = Image.open(os.path.join(ann_folder, depth_files[0]))
ids = [i for i in np.unique(np.array(mask))]
if len(ids)==1:
idx = random.randint(0, len(self.dataset) - 1)
print("len(ids), error")
continue
numpy_depth_images = np.array([pil_image_to_numpy(Image.open(os.path.join(ann_folder, df)),True,ids,size=self.sample_size) for df in depth_files])
heatmap_pixel_values,ids_embedding_list = self.calculate_center_coordinates(numpy_images,numpy_depth_images,ids,feature_images)
ids_embedding_list = np.array([np.array(i) for i in ids_embedding_list])
ids_embedding_list = torch.from_numpy(ids_embedding_list.transpose(0, 3, 1, 2))
heatmap_pixel_values = np.array(heatmap_pixel_values)
mask_pixel_values = numpy_to_pt(numpy_depth_images,True)
heatmap_pixel_values = numpy_to_pt(heatmap_pixel_values,True)
# Load motion values
motion_values = 180
return pixel_values, mask_pixel_values, motion_values, heatmap_pixel_values, ids_embedding_list
def __len__(self):
return self.length
def coordinates_normalize(self,center_coordinates):
first_point = center_coordinates[0]
center_coordinates = [one-first_point for one in center_coordinates]
return center_coordinates
def normalize(self, images):
"""
Normalize an image array to [-1,1].
"""
return 2.0 * images - 1.0
def normalize_sam(self, images):
"""
Normalize an image array to [-1,1].
"""
return (images - torch.tensor([0.485, 0.456, 0.406]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1))/torch.tensor([0.229, 0.224, 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
def __getitem__(self, idx):
pixel_values, mask_pixel_values,motion_values,heatmap_pixel_values,feature_images = self.get_batch(idx)
pixel_values = self.normalize(pixel_values)
sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values,
motion_values=motion_values,heatmap_pixel_values=heatmap_pixel_values,Id_Images=feature_images)
return sample
def load_dinov2():
dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14').cuda()
dinov2_vitl14.eval()
# dinov2_vitl14.requires_grad_(False)
return dinov2_vitl14
if __name__ == "__main__":
# from util import save_videos_grid
# torch.multiprocessing.set_start_method('spawn')
dino = load_dinov2()
dino.to(dtype=torch.float16)
dataset = YoutubeVos(
video_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/JPEGImages",
ann_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/Annotations",
feature_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/embedding",
sample_size=256,
sample_stride=1, sample_n_frames=16
)
# import pdb
# pdb.set_trace()
inverse_process = transforms.Compose([
transforms.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]),
])
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=10,)
for idx, batch in enumerate(dataloader):
images = ((batch["pixel_values"][0].permute(0,2,3,1)+1)/2)*255
masks = batch["mask_pixel_values"][0].permute(0,2,3,1)*255
heatmaps = batch["heatmap_pixel_values"][0].permute(0,2,3,1)
# Id_Images = ((batch["Id_Images"][0])*torch.tensor([0.229, 0.224, 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)+torch.tensor([0.485, 0.456, 0.406]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)).permute(0,2,3,1)*255
# center_coordinates = batch["center_coordinates"]
print(batch["pixel_values"].shape)
# print(Id_Images.shape)
for i in range(images.shape[0]):
image = images[i].numpy().astype(np.uint8)
# print(Id_Images[i].shape)
# Id_Image = inverse_process(Id_Images[i]).permute(1,2,0).numpy().astype(np.uint8)
# Id_Image = Id_Images[i].numpy().astype(np.uint8)
# print(Id_Image.shape)
mask = masks[i].numpy()
heatmap = heatmaps[i].numpy()
# center_coordinate = center_coordinates[i][0][:2].numpy().astype(np.uint8)
# print(mask.shape)
# print(center_coordinate)
# mask[center_coordinate[0]:center_coordinate[0]+10,center_coordinate[1]:center_coordinate[1]+10]=125
print(np.unique(mask))
# print(Id_Image.shape)
cv2.imwrite("./vis/image_{}.jpg".format(i), image)
# cv2.imwrite("./vis/Id_Image_{}.jpg".format(i), Id_Image)
cv2.imwrite("./vis/mask_{}.jpg".format(i), mask.astype(np.uint8))
cv2.imwrite("./vis/heatmap_{}.jpg".format(i), heatmap.astype(np.uint8))
cv2.imwrite("./vis/{}.jpg".format(i), heatmap.astype(np.uint8)*0.5+image*0.5)
# save_videos_grid(batch["pixel_values"][i:i+1].permute(0,2,1,3,4), os.path.join(".", f"{idx}-{i}.mp4"), rescale=True)
break |