File size: 14,591 Bytes
cd1e8dc 628e6c3 cd1e8dc 628e6c3 35f97ba 628e6c3 426fb9c 822b647 426fb9c 1195790 65fc27d 1195790 ba29a7c 39db156 ba29a7c 39db156 a30c911 39db156 822b647 39db156 822b647 a77d97b a30c911 ba29a7c 663f236 39db156 663f236 ba29a7c 60c2a6b f4db608 717bd90 39db156 60c2a6b 1d71dff 60c2a6b 39db156 60c2a6b cd1e8dc a77d97b cd1e8dc 0a95bff cd1e8dc a5e9129 cd1e8dc a77d97b cd1e8dc 35f97ba be5cb04 f2819ff ce09356 ccf1a03 cd1e8dc 4598830 cd1e8dc 4598830 cd1e8dc e57f9cc cd1e8dc 9702a1f cd1e8dc a5e9129 cd1e8dc 9702a1f a5e9129 cd1e8dc 7b66f42 cd1e8dc 788a013 dc72f49 788a013 cd1e8dc 788a013 cd1e8dc 68696f0 71f4cfe 5461399 cd1e8dc 71f4cfe cd1e8dc 71f4cfe 783c45d cd1e8dc 783c45d cd1e8dc a5e9129 cd1e8dc 628e6c3 1195790 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 3f2581f 628e6c3 14811bd 4598830 a77d97b 628e6c3 a5f0d0c d74d315 ba29a7c a30c911 bf28d41 f7a5714 e5488f2 f7a5714 14811bd f7a5714 14811bd f7a5714 ba29a7c 60c2a6b 39db156 ba29a7c 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 4598830 628e6c3 cd1e8dc 628e6c3 88bd8ea 628e6c3 a5e9129 628e6c3 a5e9129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# This file is adapted from https://huggingface.co/spaces/diffusers/controlnet-canny/blob/main/app.py
# The original license file is LICENSE.ControlNet in this repo.
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel, FlaxDPMSolverMultistepScheduler
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed
from flax.training.common_utils import shard
from flax.jax_utils import replicate
from diffusers.utils import load_image
import jax.numpy as jnp
import jax
import cv2
from PIL import Image
import numpy as np
import gradio as gr
import os
if gr.__version__ != "3.28.3": #doesn't work...
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.28.3")
title_description = """
# Unlimited Controlled Domain Randomization Network for Bridging the Sim2Real Gap in Robotics
"""
description = """
While existing ControlNet and public diffusion models are predominantly geared towards high-resolution images (512x512 or above) and intricate artistic detail generation, there's an untapped potential of these models in Automatic Data Augmentation (ADA).
By harnessing the inherent variance in prompt-conditioned generated images, we can significantly boost the visual diversity of training samples for computer vision pipelines.
This is particularly relevant in the field of robotics, where deep learning is increasingly playing a pivotal role in training policies for robotic manipulation from images.
In this HuggingFace sprint, we present UCDR-Net (Unlimited Controlled Domain Randomization Network), a novel CannyEdge mini-ControlNet trained on Stable Diffusion 1.5 with mixed datasets.
Our model generates photorealistic and varied renderings from simplistic robotic simulation images, enabling real-time data augmentation for robotic vision training.
We specifically designed UCDR-Net to be fast and composition preserving, with an emphasis on lower resolution images (128x128) for online data augmentation in typical preprocessing pipelines.
Our choice of Canny Edge version of ControlNet ensures shape and structure preservation in the image, which is crucial for visuomotor policy learning.
We trained ControlNet from scratch using only 128x128 images, preprocessing the training datasets and extracting Canny Edge maps.
We then trained four Control-Nets with different mixtures of 2 datasets (Coyo-700M and Bridge Data) and showcased the results.
* [Coyo-700M](https://github.com/kakaobrain/coyo-dataset)
* [Bridge](https://sites.google.com/view/bridgedata)
Model Description and Training Process: Please refer to the readme file attached to the model repository.
Model Repository: [ControlNet repo](https://huggingface.co/Baptlem/UCDR-Net_models)
"""
traj_description = """
To demonstrate UCDR-Net's capabilities, we generated a trajectory of our simulated robotic environment and presented the resulting videos for each model.
We batched the frames for each video and performed independent inference for each frame, which explains the "wobbling" effect.
Prompt used for every video: "A robotic arm with a gripper and a small cube on a table, super realistic, industrial background"
"""
perfo_description = """
Our model has been benchmarked on a node of 8 A100 80Go GPUs, achieving an impressive 150 FPS image generation rate!
To make the benchmark, we loaded one of our model on every GPUs of the node. We then retrieve an episode of our simulation.
For every frame of the episode, we preprocess the image (resize, canny, …) and process the Canny image on the GPUs.
We repeated this procedure for different Batch Size (BS).
We can see that the greater the BS the greater the FPS. By increazing the BS, we take advantage of the parallelization of the GPUs.
"""
conclusion_description = """
UCDR-Net stands as a natural development in bridging the Sim2Real gap in robotics by providing real-time data augmentation for training visual policies.
We are excited to share our work with the HuggingFace community and contribute to the advancement of robotic vision training techniques.
"""
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def load_controlnet(controlnet_version):
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"Baptlem/UCDR-Net_models",
subfolder=controlnet_version,
from_flax=True,
dtype=jnp.float32,
)
return controlnet, controlnet_params
def load_sb_pipe(controlnet_version, sb_path="runwayml/stable-diffusion-v1-5"):
controlnet, controlnet_params = load_controlnet(controlnet_version)
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(
sb_path,
subfolder="scheduler"
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
sb_path,
controlnet=controlnet,
revision="flax",
dtype=jnp.bfloat16
)
pipe.scheduler = scheduler
params["controlnet"] = controlnet_params
params["scheduler"] = scheduler_params
return pipe, params
controlnet_path = "Baptlem/UCDR-Net_models"
controlnet_version = "coyo-500k"
# Constants
low_threshold = 100
high_threshold = 200
print(os.path.abspath('.'))
print(os.listdir("."))
print("Gradio version:", gr.__version__)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload()
# pipe.enable_attention_slicing()
print("Loaded models...")
def pipe_inference(
image,
prompt,
is_canny=False,
num_samples=4,
resolution=128,
num_inference_steps=50,
guidance_scale=7.5,
model="coyo-500k",
seed=0,
negative_prompt="",
):
print("Loading pipe")
pipe, params = load_sb_pipe(model)
if not isinstance(image, np.ndarray):
image = np.array(image)
processed_image = resize_image(image, resolution) #-> PIL
if not is_canny:
resized_image, processed_image = preprocess_canny(processed_image, resolution)
rng = create_key(seed)
rng = jax.random.split(rng, jax.device_count())
prompt_ids = pipe.prepare_text_inputs([prompt] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompt] * num_samples)
processed_image = pipe.prepare_image_inputs([processed_image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
print("Inference...")
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
print("Finished inference...")
# all_outputs = []
# all_outputs.append(image)
# if not is_canny:
# all_outputs.append(resized_image)
# for image in output.images:
# all_outputs.append(image)
all_outputs = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return all_outputs
def resize_image(image, resolution):
if not isinstance(image, np.ndarray):
image = np.array(image)
h, w = image.shape[:2]
ratio = w/h
if ratio > 1 :
resized_image = cv2.resize(image, (int(resolution*ratio), resolution), interpolation=cv2.INTER_NEAREST)
elif ratio < 1 :
resized_image = cv2.resize(image, (resolution, int(resolution/ratio)), interpolation=cv2.INTER_NEAREST)
else:
resized_image = cv2.resize(image, (resolution, resolution), interpolation=cv2.INTER_NEAREST)
return Image.fromarray(resized_image)
def preprocess_canny(image, resolution=128):
if not isinstance(image, np.ndarray):
image = np.array(image)
processed_image = cv2.Canny(image, low_threshold, high_threshold)
processed_image = processed_image[:, :, None]
processed_image = np.concatenate([processed_image, processed_image, processed_image], axis=2)
resized_image = Image.fromarray(image)
processed_image = Image.fromarray(processed_image)
return resized_image, processed_image
def create_demo(process, max_images=12, default_num_images=4):
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(title_description)
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type='numpy')
prompt = gr.Textbox(label='Prompt')
run_button = gr.Button(label='Run')
with gr.Accordion('Advanced options', open=False):
is_canny = gr.Checkbox(
label='Is canny', value=False)
num_samples = gr.Slider(label='Images',
minimum=1,
maximum=max_images,
value=default_num_images,
step=1)
"""
canny_low_threshold = gr.Slider(
label='Canny low threshold',
minimum=1,
maximum=255,
value=100,
step=1)
canny_high_threshold = gr.Slider(
label='Canny high threshold',
minimum=1,
maximum=255,
value=200,
step=1)
"""
resolution = gr.Slider(label='Resolution',
minimum=128,
maximum=128,
value=128,
step=1)
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=20,
step=1)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.5,
step=0.1)
model = gr.Dropdown(choices=["coyo-500k", "bridge-2M", "coyo1M-bridge2M", "coyo2M-bridge325k"],
value="coyo-500k",
label="Model used for inference",
info="Find every models at https://huggingface.co/Baptlem/UCDR-Net_models")
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=2147483647,
step=1,
randomize=True)
n_prompt = gr.Textbox(
label='Negative Prompt',
value=
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
)
with gr.Column():
result = gr.Gallery(label='Output',
show_label=False,
elem_id='gallery').style(grid=2,
height='auto')
with gr.Row():
gr.Video("./trajectory_hf/trajectory_coyo2M-bridge325k_64.avi",
format="avi",
interactive=False).style(height=512,
width=512)
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column():
gr.Markdown(traj_description)
with gr.Column():
gr.Video("./trajectory_hf/trajectory.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo-500k model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo-500k.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with bridge-2M model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_bridge-2M.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo1M-bridge2M model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo1M-bridge2M.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo2M-bridge325k model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo2M-bridge325k.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown(perfo_description)
with gr.Column():
gr.Image("./perfo_rtx.png",
interactive=False)
with gr.Row():
gr.Markdown(conclusion_description)
inputs = [
input_image,
prompt,
is_canny,
num_samples,
resolution,
#canny_low_threshold,
#canny_high_threshold,
num_steps,
guidance_scale,
model,
seed,
n_prompt,
]
prompt.submit(fn=process, inputs=inputs, outputs=result)
run_button.click(fn=process,
inputs=inputs,
outputs=result,
api_name='canny')
return demo
if __name__ == '__main__':
pipe_inference
demo = create_demo(pipe_inference)
demo.queue().launch()
# gr.Interface(create_demo).launch()
|