File size: 13,080 Bytes
7956c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import streamlit as st
import pandas as pd
import json
import base64
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import gdown


# ----------------- APP CONFIG -----------------
st.set_page_config(page_title="Synthetic Data Generation for Multi-modal LLMs", layout="wide")

# # Force Streamlit to apply a higher max message size
# st.set_option("server.maxMessageSize", 5000)

# ----------------- SIDEBAR NAVIGATION -----------------
st.sidebar.title("πŸ”— Navigation")
page = st.sidebar.radio("Go to:", ["🏠 Home", "πŸ“Š Dataset Explorer"])

# ----------------- HOME PAGE -----------------
if page == "🏠 Home":
    st.title("🧠 Synthetic Data Generation for Multi-modal LLMs")
    st.markdown("""
    ## Welcome to the Synthetic Data Generation Dashboard!  
    This project focuses on generating high-quality **multi-modal datasets** using **Gemini AI** and evaluating chatbot responses with **Gemini AI** based on 3H (Honesty, Helpfulness and Harmlessness) parameters.  

    ### πŸ“Œ **Project Objectives**
    - Generate synthetic **human-bot conversations** based on **text and images**.
    - Ensure **ethical AI** by preventing biased, toxic, or identifiable personal information.
    - **Evaluate** chatbot responses using **multiple LLM models** to assess quality.

    ### πŸ” **Methodology**
    1. **Synthetic Data Generation**:  
       - Uses **Gemini AI** to generate human-bot conversations.
       - Includes **multi-turn dialogues** with references to images.
    2. **Dataset Evaluation**:  
       - Uses **Gemini** to provide **7 evaluation scores** per conversation:
         - **Relevance, Coherence, Factual Accuracy, Bias, Fluency, Image Alignment, Creativity**.
    3. **Dataset Explorer & Visualization**:  
       - Interactive filtering and visualization of scores.
       - Image thumbnail previews for conversations.

    ### πŸš€ **Key Features**
    - πŸ“Š **Dataset Filtering & Score Visualization**
    - πŸ–ΌοΈ **Image Previews & Mapping**
    - πŸ“₯ **Download Filtered Dataset**
    """)


    st.info("πŸ”„ Use the sidebar to navigate to the **Dataset Explorer**!")

# ----------------- DATASET EXPLORER PAGE -----------------
elif page == "πŸ“Š Dataset Explorer":
    st.title("πŸ“Š Dataset Explorer")

    # Sidebar: Dataset Selection
    st.sidebar.header("πŸ“‚ Select Dataset Category")
    dataset_category = st.sidebar.selectbox("Choose Dataset Type", ["Anime", "Celeb", "Meme", "Clustered", "Combined"])

    # Define dataset file paths based on selection
    dataset_paths = {
        # "Anime": "../Final_Datasets/anime.json",
        # "Celeb": "../Final_Datasets/celeb.json",
        # "Meme": "../Final_Datasets/meme.json",
        # "Clustered": "../Final_Datasets/clustering.json",
        # "Combined": "../Final_Datasets/combined_folder.json"
        "Anime": "18EA2dgaMPxuJ1VGeYYgfp9TXXyjmLuIK",
        "Celeb": "1zhmP7QrD_ZZN8Mm5ekHZMPyVmwN877D_",
        "Meme": "1SzE0BKiOo7xV7R7D1Vr30pnoKTcyoXqu",
        "Clustered": "1Dz25PN-54OYPD0ZZ9fb9apGC40Z0bK6-",
        "Combined": "196X5cOhQu-KRyyUHxAGyNynTu38oR-Jh"
    }

    evaluation_paths = {
        # "Anime": "../Evaluation_result/clustering_part1_200_baisakhi_evaluation_results0224.json",
        # "Celeb": "../Evaluation_result/clustering_part1_200_baisakhi_evaluation_results0224.json",
        # "Meme": "../Evaluation_result/clustering_part1_200_baisakhi_evaluation_results0224.json",
        # "Clustered": "../Evaluation_result/clustering_part1_200_baisakhi_evaluation_results0224.json",
        # "Combined": "../Evaluation_result/clustering_part1_200_baisakhi_evaluation_results0224.json"
        "Anime": "1mwxYkfKN6ACy-zr-xPlFDhe2YCqmC9oU",
        "Celeb": "1Srcb3wWA1khv2ZQMSt8oRMqSjTmiLlqz",
        "Meme": "1HZtLo8iJo2rz32eJ8lVBYiZ6zo3H6C4W",
        "Clustered": "154nbfikh9VuPnER-XNxoo3ureVNKF-0o",
        "Combined": "1bVFfXtQBCfku3R3JZpAPM76nEpimF9AD"
    }

    # ----------------- DATA LOADING FUNCTIONS -----------------
    @st.cache_data
    # def load_conversation_data(json_file):
    #     with open(json_file, "r") as file:
    #         return pd.json_normalize(json.load(file), sep="_")

    @st.cache_data
    def download_from_gdrive(file_id):
        """Downloads a file from Google Drive and returns its local path."""
        url = f"https://drive.google.com/uc?id={file_id}"
        output = f"temp_{file_id}.json"  # Unique temp filename
        gdown.download(url, output, quiet=False)
        return output

    def load_conversation_data(file_id, chunk_size=500):
        """
        Lazily loads large conversation datasets in chunks to prevent memory overflow.
        Returns only the first chunk.
        """
        # Read from local
        # with open(json_file, "r") as file:
        #     data = json.load(file)  # Load JSON normally
    
        # df = pd.json_normalize(data, sep="_")  # Convert JSON to DataFrame
        # return df.iloc[:chunk_size]  # Load only the first `chunk_size` rows

        # Read from google drive
        json_file = download_from_gdrive(file_id)
    
        with open(json_file, "r") as file:
            data = json.load(file)  # Load JSON normally

        df = pd.json_normalize(data, sep="_")  # Convert JSON to DataFrame
        return df.iloc[:chunk_size]  # Load only the first `chunk_size` rows

    @st.cache_data
    def load_evaluation_data(file_id):
        #Read from local
        # with open(json_file, "r") as file:
        #     data = json.load(file)
        
        # for entry in data:
        #     for key, value in entry["evaluation_scores"].items():
        #         entry["evaluation_scores"][key] = value["score"]  # Keep only scores

        # read from google drive
        """Loads evaluation data and keeps only the scores."""
        json_file = download_from_gdrive(file_id)

        with open(json_file, "r") as file:
            data = json.load(file)
        
        for entry in data:
            for key, value in entry["evaluation_scores"].items():
                entry["evaluation_scores"][key] = value["score"]  # Keep only scores

        return pd.json_normalize(data, sep="_")

    @st.cache_data
    def convert_df_to_json(df):
        return df.to_json(orient="records", indent=4)

    # Function to decode base64 image
    def decode_base64_image(encoded_string):
        """Decodes a base64 image and returns an HTML image tag."""
        return f'<img src="data:image/png;base64,{encoded_string}" style="width:50px;height:50px;" />' 
    
    
    # Load selected dataset
    conversation_data = load_conversation_data(dataset_paths[dataset_category])
    evaluation_data = load_evaluation_data(evaluation_paths[dataset_category])

    # Merge evaluation scores into conversation data
    merged_data = conversation_data.merge(evaluation_data, on="conversation_id", how="left")

    # ----------------- FILTERING OPTIONS -----------------
    st.sidebar.header("πŸ” Filter Options")

    if "images" in merged_data.columns:
        image_counts = merged_data['images'].apply(len).unique()
        selected_image_count = st.sidebar.multiselect("Select Number of Images", image_counts, default=image_counts)

    score_columns = [col for col in evaluation_data.columns if "_score" in col]

    selected_score = None
    if score_columns:
        selected_score = st.sidebar.selectbox("Filter by Score Metric", score_columns)
        min_score, max_score = st.sidebar.slider("Select Score Range", 0, 10, (5, 10))
    else:
        st.sidebar.error("⚠️ No evaluation score columns found!")

    search_text = st.sidebar.text_input("Search in Conversation")

    # Apply Filters
    filtered_conversations = merged_data.copy()

    if "images" in merged_data.columns and selected_image_count:
        filtered_conversations = filtered_conversations[filtered_conversations['images'].apply(len).isin(selected_image_count)]

    if selected_score and selected_score in merged_data.columns:
        filtered_conversations = filtered_conversations[filtered_conversations[selected_score].between(min_score, max_score)]

    if search_text and "conversation" in merged_data.columns:
        filtered_conversations = filtered_conversations[filtered_conversations["conversation"].str.contains(search_text, case=False, na=False)]

    # ----------------- DISPLAY FILTERED DATA -----------------
    # st.subheader("πŸ“Š Filtered Conversations")

    # if not filtered_conversations.empty:
    #     json_data = convert_df_to_json(filtered_conversations)
    #     st.download_button("πŸ“₯ Download Filtered Data (JSON)", data=json_data, file_name="filtered_dataset.json", mime="application/json")
    #     st.dataframe(filtered_conversations)
    # else:
    #     st.warning("⚠️ No data matches your filters.")

    # # ----------------- VISUALIZATIONS -----------------
    # if not filtered_conversations.empty:
    #     avg_scores = filtered_conversations[score_columns].mean().reset_index()
    #     avg_scores.columns = ["Metric", "Average Score"]

    #     avg_scores["Metric"] = avg_scores["Metric"].str.replace("evaluation_scores_", "").str.replace("_score", "").str.replace("_", " ").str.title()

    #     st.subheader("πŸ“Š Average Scores by Metric (Filtered Data)")
    #     fig = px.bar(avg_scores, x="Metric", y="Average Score", color="Metric", text="Average Score")
    #     st.plotly_chart(fig)

    #     st.subheader("πŸ”₯ Heatmap of Evaluation Scores")
    #     plt.figure(figsize=(10, 5))
    #     sns.heatmap(filtered_conversations[score_columns].corr(), annot=True, cmap="coolwarm", fmt=".2f")
    #     st.pyplot(plt)

    # βœ… Define evaluation score columns
    score_columns = [
        "evaluation_scores_Relevance",
        "evaluation_scores_Coherence",
        "evaluation_scores_Factual Accuracy",
        "evaluation_scores_Bias & Toxicity",
        "evaluation_scores_Fluency",
        "evaluation_scores_Image Alignment",
        "evaluation_scores_Creativity"
    ]

    # βœ… Ensure filtered_data is not empty before calculations
    if not filtered_conversations.empty:
        # βœ… Compute average scores
        avg_scores = filtered_conversations[score_columns].mean().reset_index()
        avg_scores.columns = ["Metric", "Average Score"]  # Rename columns

        # βœ… Rename metrics for better readability
        clean_labels = {
            "evaluation_scores_Relevance": "Relevance",
            "evaluation_scores_Coherence": "Coherence",
            "evaluation_scores_Factual Accuracy": "Factual Accuracy",
            "evaluation_scores_Bias & Toxicity": "Bias & Toxicity",
            "evaluation_scores_Fluency": "Fluency",
            "evaluation_scores_Image Alignment": "Image Alignment",
            "evaluation_scores_Creativity": "Creativity"
        }
        avg_scores["Metric"] = avg_scores["Metric"].replace(clean_labels)

        # βœ… Re-plot bar chart with updated labels
        st.subheader("πŸ“Š Average Scores by Metric (Filtered Data)")
        fig = px.bar(avg_scores, x="Metric", y="Average Score", color="Metric", text="Average Score")
        fig.update_layout(xaxis_title="Evaluation Metric", yaxis_title="Average Score")
        st.plotly_chart(fig)
    else:
        st.warning("⚠️ No data available after filtering. Adjust filters to see results.")


    # Show Filtered Dataset with Image Thumbnails and Image-to-Tag Mapping
    st.subheader("πŸ“Š Filtered Conversations")




    if not filtered_conversations.empty:
        json_data = convert_df_to_json(filtered_conversations)
        st.download_button(
            label="πŸ“₯ Download Filtered Data (JSON)",
            data=json_data,
            file_name="filtered_dataset.json",
            mime="application/json",
        )

        for index, row in filtered_conversations.iterrows():
            st.markdown(f"### **Conversation ID: {row['conversation_id']}**")

            # Image-to-Tag Mapping
            st.markdown("**πŸ“· Image-to-Tag Mapping:**")
            image_mappings = {}
            for idx, img_data in enumerate(row["images"]):
                img_name = img_data["name"]
                img_tag = f"<img_{idx+1}>"
                image_mappings[img_tag] = img_name
            
            st.json(image_mappings)  # Display mapping

            # Show Images as Thumbnails
            st.markdown("**πŸ–ΌοΈ Images Used:**")
            image_html = ""
            for img in row["images"]:
                image_html += decode_base64_image(img["base64"]) + " "
            
            st.markdown(image_html, unsafe_allow_html=True)  # Render images inline
            
            # Show Conversation
            st.markdown(f"**πŸ’¬ Conversation:** {row['conversation']}")

            # Show Scores
            st.markdown("**πŸ“Š Evaluation Scores:**")
            scores = {key: row[key] for key in score_columns if key in row}
            st.json(scores)

            st.divider()  # Add a separator between conversations

    else:
        st.warning("⚠️ No data matches your filters.")