File size: 12,421 Bytes
517b5fd
 
9fc8907
517b5fd
9fc8907
 
 
 
 
517b5fd
9fc8907
 
 
 
 
 
 
 
 
517b5fd
9fc8907
 
 
 
517b5fd
9fc8907
 
 
 
 
517b5fd
9fc8907
 
 
 
517b5fd
9fc8907
 
 
 
 
517b5fd
 
 
9fc8907
 
517b5fd
9fc8907
 
 
 
 
 
 
 
 
 
 
 
517b5fd
9fc8907
 
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
 
9fc8907
517b5fd
9fc8907
 
 
 
 
 
 
 
 
 
 
 
 
 
517b5fd
9fc8907
 
 
 
 
 
 
 
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
 
 
 
 
 
 
 
 
9fc8907
517b5fd
 
 
 
 
 
 
 
 
 
 
 
 
9fc8907
517b5fd
 
 
 
 
 
9fc8907
517b5fd
9fc8907
517b5fd
 
 
 
 
 
 
 
 
 
 
 
 
9fc8907
517b5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc8907
517b5fd
9fc8907
517b5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc8907
 
517b5fd
 
 
 
 
 
 
9fc8907
517b5fd
9fc8907
517b5fd
 
 
9fc8907
517b5fd
 
 
 
 
66fc23c
517b5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc8907
517b5fd
 
9fc8907
517b5fd
 
9fc8907
 
 
517b5fd
 
9fc8907
 
 
 
 
 
 
 
 
 
 
 
 
517b5fd
 
 
 
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
9fc8907
517b5fd
 
9fc8907
 
 
517b5fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Gradio Application for Voice Cloning
# Version as of 21/10/2024

import gradio as gr
import torch
import torchaudio
import tempfile
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT
from cached_path import cached_path
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    save_spectrogram,
)
from transformers import pipeline
import soundfile as sf

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3",
    torch_dtype=torch.float16,
    device=device,
)
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

# Settings
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0

def load_model():
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
    ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
    vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
    model = CFM(
        transformer=UNetT(
            **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
        ),
        mel_spec_kwargs=dict(
            target_sample_rate=target_sample_rate,
            n_mel_channels=n_mel_channels,
            hop_length=hop_length,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)
    model = load_checkpoint(model, ckpt_path, device, use_ema=True)
    return model

model = load_model()

# Inferencing Logic

def infer(ref_audio, ref_text, gen_text, remove_silence, progress=gr.Progress()):
    progress(0, desc="Processing audio...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        aseg = AudioSegment.from_file(ref_audio)
        non_silent_segs = silence.split_on_silence(
            aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000
        )
        non_silent_wave = AudioSegment.silent(duration=0)
        for non_silent_seg in non_silent_segs:
            non_silent_wave += non_silent_seg
        aseg = non_silent_wave
        audio_duration = len(aseg)
        if audio_duration > 15000:
            gr.Warning("Audio is over 15s, clipping to only first 15s.")
            aseg = aseg[:15000]
        aseg.export(f.name, format="wav")
        ref_audio = f.name

    progress(20, desc="Transcribing audio...")
    if not ref_text.strip():
        ref_text = pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe"},
            return_timestamps=False,
        )["text"].strip()
    
    if not ref_text.endswith(". "):
        ref_text += ". " if not ref_text.endswith(".") else " "

    progress(40, desc="Generating audio...")
    audio, sr = torchaudio.load(ref_audio)
    if audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True)
    rms = torch.sqrt(torch.mean(torch.square(audio)))
    if rms < target_rms:
        audio = audio * target_rms / rms
    if sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
        audio = resampler(audio)
    audio = audio.to(device)

    text_list = [ref_text + gen_text]
    duration = audio.shape[-1] // hop_length + int(audio.shape[-1] / hop_length / len(ref_text) * len(gen_text) / speed)

    progress(60, desc="Synthesizing speech...")
    with torch.inference_mode():
        generated, _ = model.sample(
            cond=audio,
            text=text_list,
            duration=duration,
            steps=nfe_step,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
        )

    generated = generated.to(torch.float32)
    generated = generated[:, audio.shape[-1] // hop_length:, :]
    generated_mel_spec = generated.permute(0, 2, 1)
    generated_wave = vocos.decode(generated_mel_spec.cpu())
    if rms < target_rms:
        generated_wave = generated_wave * rms / target_rms

    generated_wave = generated_wave.squeeze().cpu().numpy()

    progress(80, desc="Post-processing...")
    if remove_silence:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            sf.write(f.name, generated_wave, target_sample_rate)
            aseg = AudioSegment.from_file(f.name)
            non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
            non_silent_wave = AudioSegment.silent(duration=0)
            for non_silent_seg in non_silent_segs:
                non_silent_wave += non_silent_seg
            aseg = non_silent_wave
            aseg.export(f.name, format="wav")
            generated_wave, _ = torchaudio.load(f.name)
        generated_wave = generated_wave.squeeze().cpu().numpy()

    progress(90, desc="Generating spectrogram...")
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
        spectrogram_path = tmp_spectrogram.name
        save_spectrogram(generated_mel_spec[0].cpu().numpy(), spectrogram_path)

    progress(100, desc="Done!")
    return (target_sample_rate, generated_wave), spectrogram_path

custom_css = """

/* Dark theme customization */
:root {
    --background-fill-primary: #1a1a1a !important;
    --background-fill-secondary: #2d2d2d !important;
    --border-color-primary: #404040 !important;
    --text-color: #ffffff !important;
    --body-text-color: #ffffff !important;
    --color-accent-soft: #3d4c7d !important;
}

body {
    background-color: #1a1a1a !important;
    color: #ffffff !important;
}

.gradio-container {
    background-color: #1a1a1a !important;
}

.tabs {
    background-color: #2d2d2d !important;
}

.tab-selected {
    background-color: #404040 !important;
}

#logo-column {
    display: flex;
    justify-content: flex-end;
    align-items: flex-start;
    background-color: transparent !important;
}

#logo-column img {
    max-width: 180px;
    height: auto;
    margin-top: 10px;
    filter: brightness(0.9);
}

.gr-box {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

.gr-button {
    background-color: #3d4c7d !important;
    color: white !important;
}

.gr-button:hover {
    background-color: #4a5d99 !important;
}

/* Modified input styling for darker background */
.gr-input, .gr-textarea {
    background-color: #1a1a1a !important;
    color: white !important;
    border: 1px solid #404040 !important;
}

#step-2-input textarea {
    background-color: #ffffff !important;
    color: #000000 !important;
    border-color: #404040 !important;
}

#step-2-input textarea:focus {
    border-color: #3d4c7d !important;
    box-shadow: 0 0 0 2px rgba(61, 76, 125, 0.2) !important;
}

#reference-text-input textarea {
    background-color: #fffff !important;
    color: #000000!important;
    border-color: #404040 !important;
}

#reference-text-input textarea:focus {
    border-color: #3d4c7d !important;
    box-shadow: 0 0 0 2px rgba(61, 76, 125, 0.2) !important;
}

.gr-accordion {
    background-color: #2d2d2d !important;
}

.gr-form {
    background-color: transparent !important;
}

.markdown-text {
    color: #ffffff !important;
}

.markdown-text h1, .markdown-text h2, .markdown-text h3 {
    color: #ffffff !important;
}

.audio-player {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

"""

custom_theme = gr.themes.Soft(
    primary_hue="indigo",
    secondary_hue="slate",
    neutral_hue="slate",
    font=gr.themes.GoogleFont("Inter"),
).set(
    body_background_fill="#1a1a1a",
    body_background_fill_dark="#1a1a1a",
    body_text_color="#ffffff",
    body_text_color_dark="#ffffff",
    background_fill_primary="#2d2d2d",
    background_fill_primary_dark="#2d2d2d",
    background_fill_secondary="#1a1a1a",
    background_fill_secondary_dark="#1a1a1a",
    border_color_primary="#404040",
    border_color_primary_dark="#404040",
    button_primary_background_fill="#3d4c7d",
    button_primary_background_fill_dark="#3d4c7d",
    button_primary_text_color="#ffffff",
    button_primary_text_color_dark="#ffffff",
)


with gr.Blocks(theme=custom_theme, css=custom_css) as app:
    
    with gr.Row():
        with gr.Column(scale=9):
            gr.Markdown(
                """
                # Antriksh AI

                Welcome to our voice cloning application! Follow these steps to create your own custom voice:

                1. Upload a short audio clip (less than 15 seconds) of the voice you want to clone.
                2. Enter the text you want to generate in the new voice.
                3. Click "Synthesize" and listen to hear the magic!

                It's that easy! Let's get started.
                """
            )
            
        with gr.Column(scale=1, elem_id="logo-column"):
            gr.Image("logo/logo-removebg-preview.png", label="", show_label=False)
    
    with gr.Row():
        with gr.Column(scale=1):
            ref_audio_input = gr.Audio(
                label="Step 1: Upload Reference Audio",
                type="filepath",
                elem_classes="audio-player"
            )
            gen_text_input = gr.Textbox(
                label="Step 2: Enter Text to Generate",
                lines=5,
                elem_id="step-2-input",
                elem_classes="gr-textarea"
            )
            generate_btn = gr.Button(
                "Step 3: Synthesize",
                variant="primary",
                elem_classes="gr-button"
            )

        with gr.Column(scale=1):
            audio_output = gr.Audio(
                label="Generated Audio",
                elem_classes="audio-player"
            )
            spectrogram_output = gr.Image(label="Spectrogram")

    with gr.TabItem("Advanced Settings"):
        gr.Markdown(
            "These settings are optional. If you're not sure, leave them as they are."
        )
        ref_text_input = gr.Textbox(
            label="Reference Text (Optional)",
            info="Leave blank for automatic transcription.",
            lines=2,
            elem_id="reference-text-input",
            elem_classes="gr-textarea"
        )
        remove_silence = gr.Checkbox(
            label="Remove Silences",
            info="This can improve the quality of longer audio clips.",
            value=True
        )

    generate_btn.click(
        infer,
        inputs=[
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            remove_silence,
        ],
        outputs=[audio_output, spectrogram_output],
    )
    
    with gr.TabItem("How It Works"):
        gr.Markdown(
            """
            # How Voice Cloning Works

            Our voice cloning system uses advanced AI technology to create a synthetic voice that sounds like the reference audio you provide. Here's a simplified explanation of the process:

            1. **Audio Analysis**: When you upload a reference audio clip, our system analyzes its unique characteristics, including pitch, tone, and speech patterns.

            2. **Text Processing**: The text you want to generate is processed and converted into a format that our AI model can understand.

            3. **Voice Synthesis**: Our AI model, based on the E2-TTS (Embarrassingly Easy Text-to-Speech) architecture, combines the characteristics of the reference audio with the new text to generate a synthetic voice.

            4. **Audio Generation**: The synthetic voice is converted into an audio waveform, which you can then play back or download.

            5. **Spectrogram Creation**: A visual representation of the audio (spectrogram) is generated, showing the frequency content of the sound over time.

            This process allows you to generate new speech in the voice of the reference audio, even saying things that weren't in the original recording. It's a powerful tool for creating custom voiceovers, audiobooks, or just for fun!

            Remember, the quality of the output depends on the quality and length of the input audio. For best results, use a clear, high-quality audio clip of 10-15 seconds in length.
            """
        )

if __name__ == "__main__":
    app.launch(share=True)