File size: 7,277 Bytes
762b8c6
98f580f
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98f580f
762b8c6
 
98f580f
 
 
 
762b8c6
 
 
 
 
 
 
 
 
 
98f580f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570084
 
 
98f580f
 
9570084
 
 
98f580f
 
 
 
 
9570084
98f580f
9570084
98f580f
9570084
98f580f
 
9570084
 
98f580f
 
 
 
9570084
98f580f
 
 
 
 
 
 
 
 
 
9570084
98f580f
 
 
9570084
98f580f
 
 
 
 
 
 
 
 
 
 
 
9570084
 
 
98f580f
9570084
98f580f
 
 
 
9570084
 
 
 
98f580f
 
 
 
 
 
 
 
 
 
 
 
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570084
 
98f580f
762b8c6
98f580f
9570084
98f580f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import pandas as pd
from services.huggingface import init_huggingface, update_dataset
from services.json_generator import generate_json
from ui.form_components import (
    create_header_tab,
    create_task_tab,
    create_measures_tab,
    create_system_tab,
    create_software_tab,
    create_infrastructure_tab,
    create_environment_tab,
    create_quality_tab,
    create_hash_tab
)

# Initialize Hugging Face
init_huggingface()

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## ML-related Data Collection Form")
    gr.Markdown("Welcome to this Huggingface space that helps you fill in a form for monitoring the energy consumption of an AI model.")


    csv_upload = gr.File(label="Upload CSV", file_types=[".csv"])
    gr.Label("Please upload a CSV file with the data you want to analyze.")

    # Create form tabs
    header_components = create_header_tab()
    task_components = create_task_tab()
    measures_components = create_measures_tab()
    system_components = create_system_tab()
    software_components = create_software_tab()
    infrastructure_components = create_infrastructure_tab()
    environment_components = create_environment_tab()
    quality_components = create_quality_tab()
    hash_components = create_hash_tab()
    
    # Gather all form components in the order they appear in the inputs

    all_form_components = (
    header_components          # 11 items (indices 0-10)
    + task_components          # 28 items (indices 11-38)
    + measures_components      # 14 items (indices 39-52)
    + system_components        # 3 items (indices 53-55)
    + software_components      # 2 items (indices 56-57)
    + infrastructure_components # 10 items (indices 58-67)
    + environment_components   # 7 items (indices 68-74)
    + quality_components       # 1 item (index 75)
    + hash_components          # 3 items (indices 76-78)
)
    
    # Parse CSV and update form values
    def parse_csv_and_update_form(csv_file, *current_values):
        updated_values = list(current_values)
        if csv_file is None:
            return updated_values
        
        try:
            df = pd.read_csv(csv_file.name)
            csv_data = df.iloc[0].to_dict()
            
            # ========== HEADER ==========
            updated_values[3] = csv_data.get('run_id', '')  # reportId (index 3)
            updated_values[4] = csv_data.get('timestamp', '')  # reportDatetime (4)
            updated_values[8] = csv_data.get('project_name', '')  # publisher_projectName (8)
            
            # ========== SYSTEM ==========
            updated_values[54] = csv_data.get('os', '')  # os (index 53)
            updated_values[55] = ""  # distribution (54)
            updated_values[56] = ""  # distributionVersion (55)
            
            # ========== MEASURES ==========
            updated_values[40] = csv_data.get('tracking_mode', '')  # measurementMethod (39)
            updated_values[48] = "kWh"  # unit (47)
            updated_values[51] = csv_data.get('energy_consumed', '')  # powerConsumption (50)
            
            # Duration conversion (hours → seconds)
            if 'duration' in csv_data:
                try:
                    hours = float(csv_data['duration'])
                    updated_values[52] = str(round(hours * 3600, 2))  # measurementDuration (51)
                except:
                    updated_values[52] = ""
            
            updated_values[53] = csv_data.get('timestamp', '')  # measurementDateTime (52)
            
            # ========== SOFTWARE ==========
            updated_values[57] = "Python"  # language (56)
            updated_values[58] = csv_data.get('python_version', '')  # version_software (57)
            
            # ========== INFRASTRUCTURE ==========
            # infraType (58) - Dropdown
            on_cloud = str(csv_data.get('on_cloud', 'No')).lower().strip()
            updated_values[59] = "publicCloud" if on_cloud == "yes" else "onPremise"
            
            # Cloud fields (59-60)
            updated_values[59] = csv_data.get('cloud_provider', '') if on_cloud == "yes" else ""
            updated_values[60] = csv_data.get('cloud_region', '') if on_cloud == "yes" else ""
            
            # Component logic (61-67)
            gpu_count = int(csv_data.get('gpu_count', 0))
            cpu_count = int(csv_data.get('cpu_count', 0))
            
            if gpu_count > 0:
                
                updated_values[62] = str(gpu_count)  # nbComponent (62)
                model = csv_data.get('gpu_model', '')
            elif cpu_count > 0:
                u
                updated_values[62] = str(cpu_count)  # nbComponent (62)
                model = csv_data.get('cpu_model', '')
            else:
                model = ""
            
            # Memory size (63)
            ram_size = csv_data.get('ram_total_size', '')
            updated_values[63] = f"{ram_size} GB" if ram_size and float(ram_size) > 0 else ""
            
            # Split model into manufacturer/family/series (64-66)
            if model:
                parts = model.replace("(R)", "").replace("(TM)", "").split()
                updated_values[65] = parts[0] if parts else ""  # manufacturer_infra (64)
                updated_values[66] = " ".join(parts[1:3]) if len(parts) >= 3 else ""  # family (65)
                updated_values[67] = " ".join(parts[3:]) if len(parts) > 3 else ""  # series (66)
            else:
                updated_values[65] = updated_values[66] = updated_values[67] = ""
            
            updated_values[67] = ""  # share (67)
            
            # ========== ENVIRONMENT ==========
            updated_values[69] = csv_data.get('country_name', '')  # country (68)
            updated_values[70] = csv_data.get('latitude', '')  # latitude (69)
            updated_values[71] = csv_data.get('longitude', '')  # longitude (70)
            updated_values[72] = csv_data.get('region', '')  # location (71)
            
        except Exception as e:
            print(f"CSV Processing Error: {str(e)}")
        
        return updated_values

    # Parse CSV and update form values
    csv_upload.change(
        fn=parse_csv_and_update_form,
        inputs=[csv_upload] + all_form_components,
        outputs=all_form_components
    )

    # Submit and Download Buttons
    submit_button = gr.Button("Submit")
    output = gr.Textbox(label="Output", lines=1)
    json_output = gr.Textbox(visible=False)
    file_output = gr.File(label="Downloadable JSON")

    # Event Handlers
    submit_button.click(
        generate_json,
        inputs=[
            *header_components,
            *task_components,
            *measures_components,
            *system_components,
            *software_components,
            *infrastructure_components,
            *environment_components,
            *quality_components,
            *hash_components
        ],
        outputs=[output, file_output, json_output]
    ).then(
        update_dataset,
        inputs=json_output,
        outputs=output
    )

print(all_form_components)
print(len(all_form_components))

if __name__ == "__main__":
    demo.launch()
    print(all_form_components)