File size: 5,362 Bytes
dd4cd4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91911bd
dd4cd4b
 
 
 
 
 
 
 
 
 
 
 
 
91911bd
dd4cd4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# A100 Zero GPU
import spaces

# flash attention
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Phantom Package
import torch
from PIL import Image
from utils.utils import *
from model.load_model import load_model

# Gradio Package
import time
import gradio as gr
from threading import Thread
from accelerate import Accelerator
from transformers import TextIteratorStreamer
from torchvision.transforms.functional import pil_to_tensor

# accel
accel = Accelerator()

# loading model
model_1_8, tokenizer_1_8 = load_model(size='1.8b')

# loading model
model_3_8, tokenizer_3_8 = load_model(size='3.8b')

# loading model
model_7, tokenizer_7 = load_model(size='7b')

def threading_function(inputs, streamer, device, model, tokenizer, temperature, new_max_token, top_p):

    # propagation
    _inputs = model.eval_process(inputs=inputs,
                                 data='demo',
                                 tokenizer=tokenizer,
                                 device=device)
    generation_kwargs = _inputs
    generation_kwargs.update({'streamer': streamer})
    generation_kwargs.update({'do_sample': True})
    generation_kwargs.update({'max_new_tokens': new_max_token})
    generation_kwargs.update({'top_p': top_p})
    generation_kwargs.update({'temperature': temperature})
    generation_kwargs.update({'use_cache': True})
    return model.generate(**generation_kwargs)

@spaces.GPU
def bot_streaming(message, history, link, temperature, new_max_token, top_p):

    # model selection
    if "1.8B" in link:
        model = model_1_8
        tokenizer = tokenizer_1_8
    elif "3.8B" in link:
        model = model_3_8
        tokenizer = tokenizer_3_8
    elif "7B" in link:
        model = model_7
        tokenizer = tokenizer_7
    
    # X -> bfloat16 conversion 
    for param in model.parameters():
        if 'float32' in str(param.dtype).lower() or 'float16' in str(param.dtype).lower():
            param.data = param.data.to(torch.bfloat16)

    # cpu -> gpu
    for param in model.parameters():
        if not param.is_cuda:
            param.data = param.to(accel.device)

    try:
        # prompt type -> input prompt
        if len(message['files']) == 1:
            # Image Load
            image = pil_to_tensor(Image.open(message['files'][0]).convert("RGB"))
            inputs = [{'image': image.to(accel.device), 'question': message['text']}]
        elif len(message['files']) > 1:
            raise Exception("No way!")
        else:
            inputs = [{'question': message['text']}]

        # Text Generation
        with torch.inference_mode():
            # kwargs
            streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)

            # Threading generation
            thread = Thread(target=threading_function, kwargs=dict(inputs=inputs,
                                                                streamer=streamer,
                                                                model=model,
                                                                tokenizer=tokenizer,
                                                                device=accel.device,
                                                                temperature=temperature,
                                                                new_max_token=new_max_token,
                                                                top_p=top_p))
            thread.start()

            # generated text
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
            generated_text

        # Text decoding
        response = output_filtering(generated_text, model)

    except:
        response = "There may be unsupported format: ex) pdf, video, sound. Only supported is a single image in this version."

    # private log print
    text = message['text']
    files = message['files']
    print('-----------------------------')
    print(f'Link: {link}')
    print(f'Text: {text}')
    print(f'MM Files: {files}')
    print(f'Response: {response}')
    print('-----------------------------\n')


    buffer = ""
    for character in response:
        buffer += character
        time.sleep(0.012)
        yield buffer

demo = gr.ChatInterface(fn=bot_streaming,
                        additional_inputs = [gr.Radio(["1.8B", "3.8B", "7B"], label="Size", info="Select one model size", value="7B"), gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")],
                        additional_inputs_accordion="Generation Hyperparameters",
                        theme=gr.themes.Soft(),
                        title="Phantom",
                        description="Phantom is super efficient 0.5B, 1.8B, 3.8B, and 7B size Large Language and Vision Models built on new propagation strategy. "
                                    "Its inference speed highly depends on assinging non-scheduled GPU. (Therefore, once all GPUs are busy, then inference may be taken in infinity) "
                                    "Note that, we don't support history-based conversation referring to previous dialogue",
                        stop_btn="Stop Generation", multimodal=True)
demo.launch()