File size: 26,056 Bytes
6957169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
import re
import json
import shortuuid
import numpy as np
import pandas as pd
from config import *
from collections import defaultdict
from eval.utils import *

class BaseEvaluator:
    def __init__(self):
        super(BaseEvaluator, self).__init__()

        # Create evaluation results folder
        self.save_dir = os.path.join(DATASET_ROOT, "eval_results")
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)

    def reset(self):
        # Reset results for new dataset evaluation
        self.gen_answers = []
        self.inputs = []
    
    def process(self, inputs, outputs):
        # Merge results
        self.inputs.extend(inputs)
        self.gen_answers.extend(outputs)

class Evaluator(BaseEvaluator):
    def __init__(self):
        """
        Eval Datasets

        - VQAv2
        - GQA
        - SQA-IMG
        - VizWiz
        - TextVQA
        - POPE
        - MME
        - MMBench
        - MMBench-CN
        - QBench
        - MM-Vet
        - MMMU
        - MathVista
        - AI2D
        - HallusionBench
        - ChartQA
        - SEED
        - LLaVA Wild
        - BLINK
        - MathVerse

        """
              
        super().__init__()
    
    def evaluate(self, model, dataset, accel):

        # gathering all gpu to one device
        self.inputs = accel.gather_for_metrics(self.inputs)
        self.gen_answers = accel.gather_for_metrics(self.gen_answers)
        
        if accel.is_main_process:
            # check for duplicates
            self.inputs, self.gen_answers = remove_duplicate(dataset, self.inputs, self.gen_answers)

            # Select evaluation for dataset
            if dataset == "vqav2":
                return self.evaluate_vqa(model, accel)
            elif dataset == "gqa":
                return self.evaluate_gqa(model, accel)
            elif dataset == "sqa":
                return self.evaluate_sqa(model, accel)
            elif dataset == "vizwiz":
                return self.evaluate_vizwiz(model, accel)
            elif dataset == "textvqa":
                return self.evaluate_textvqa(model, accel)
            elif dataset == "pope":
                return self.evaluate_pope(model, accel)
            elif dataset == "mme":
                return self.evaluate_mme(model, accel)
            elif dataset == "mmbench":
                return self.evaluate_mmbench(model, accel)
            elif dataset == "mmbench_dev":
                return self.evaluate_mmbench_dev(model, accel)
            elif dataset == "mmbench_cn":
                return self.evaluate_mmbench_cn(model, accel)
            elif dataset == "mmbench_cn_dev":
                return self.evaluate_mmbench_cn_dev(model, accel)
            elif dataset == "qbench":
                return self.evaluate_qbench(model, accel)
            elif dataset == "mm-vet":
                return self.evaluate_mmvet(model, accel)
            elif dataset == "mmmu":
                return self.evaluate_mmmu(model, accel)
            elif dataset == "mathvista":
                return self.evaluate_mathvista(model, accel)
            elif dataset == "ai2d":
                return self.evaluate_ai2d(model, accel)
            elif dataset == "hallusionbench":
                return self.evaluate_hallusionbench(model, accel)
            elif dataset == "chartqa":
                return self.evaluate_chartqa(model, accel)
            elif dataset == "seed":
                return self.evaluate_seed(model, accel)
            elif dataset == "llava":
                return self.evaluate_llava(model, accel)
            elif dataset == "blink":
                return self.evaluate_blink(model, accel)
            elif dataset == "mathverse":
                return self.evaluate_mathverse(model, accel)
            elif dataset == "mmstar":
                return self.evaluate_mmstar(model, accel)
            else:
                raise ValueError(
                    f'{dataset} is not an available dataset.')
        else:
            return None
        
    def evaluate_vqa(self, model, accel):
        # VQAv2 Evaluation for EvalAI server
        pred_answers = [{'question_id': inputs['id'], 'answer': answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_vqav2_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))
        accel.print(f"Finished evaluating VQAv2. Evaluate the result file saved to {pred_pth} on EvalAI server.")
        return 
    
    def evaluate_gqa(self, model, accel):
        # GQA Evaluation
        pred_answers = {inputs['id']: answer for inputs, answer in zip(self.inputs, self.gen_answers)}
        # pred_answers = [{'question_id': inputs['id'], 'answer': answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_gqa_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))
        accel.print("GQA Results:")
        results = eval_gqa(pred_answers, json.load(open(os.path.join(DATASET_ROOT, GQA))))
        return results['accuracy']
    
    def evaluate_sqa(self, model, accel):
        # SQA Evaluation
        pred_answers = [{'question_id': inputs['id'], 'answer': convert_to_choice(answer, inputs['candidates']), 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_sqa_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        # Compute accuracy
        results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
        accel.print (f"SQA Accuracy: {np.mean(results)*100} %")
        return np.mean(results)*100
    
    def evaluate_vizwiz(self, model, accel):
        # VizWiz Evaluation
        evaluator = EvalAIAnswerProcessor()
        pred_answers = [{'image': inputs['id'], 'answer': evaluator(answer)} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_vizwiz_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))
        accel.print(f"Finished evaluating VizWiz. Evaluate the result file saved to {pred_pth} on EvalAI server.")
        return 
    
    def evaluate_textvqa(self, model, accel):
        # TextVQA Evaluation
        pred_answers = [{'question_id': inputs['id'], 'pred_answer': answer, 'question': inputs['question'], 'gt_answers': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_textvqa_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))
            
        evaluator = TextVQAAccuracyEvaluator()
        results = evaluator.eval_pred_list(pred_answers)*100
        accel.print (f"TextVQA Accuracy: {results} %")
        return results
    
    def evaluate_pope(self, model, accel):
        # POPE Evaluation
        pred_answers = [{'question_id': inputs['id'], 'answer': answer, 'question': inputs['question'], 'category': inputs['category']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_pope_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        pope_results = {}
        pope_results['adversarial'] = None
        pope_results['popular'] = None
        pope_results['random'] = None

        categories = ['adversarial', 'popular', 'random']
        files = [POPE_ADVERSARIAL, POPE_POPULAR, POPE_RANDOM]

        for category, file in zip(categories, files):
            cur_answers = [x for x in pred_answers if x['category'] == category]
            cur_answers = sorted(cur_answers, key=lambda x:x["question_id"])
            pope_results[category] = eval_pope(cur_answers, os.path.join(DATASET_ROOT, file))
        accel.print (f"POPE Adversarial Accuracy: {pope_results['adversarial']} %")
        accel.print (f"POPE Popular Accuracy: {pope_results['popular']} %")
        accel.print (f"POPE Random Accuracy: {pope_results['random']} %")
        return pope_results
    
    def evaluate_mme(self, model, accel):
        # MME Evaluation
        pred_answers = [{'question_id': inputs['id'], 'answer': answer,  "question": inputs['question'], 'category': inputs['category']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_mme_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        ground_truth = get_gt(data_path=os.path.join(DATASET_ROOT, MME_DIR))
        result_dir = os.path.join(self.save_dir, 'mme')
        os.makedirs(result_dir, exist_ok=True)
        results = defaultdict(list)

        for answer in pred_answers:
            file = answer['question_id'].split('/')[-1].split('.')[0] + '.txt'
            results[answer['category']].append((file, answer['question'], answer['answer']))

        for category, cate_tups in results.items():
            with open(os.path.join(result_dir, f'{category}.txt'), 'w') as fp:
                questions = set() # check for duplicates
                for file, prompt, answer in cate_tups:
                    if 'Answer the question using a single word or phrase.' in prompt:
                        prompt = prompt.replace('Answer the question using a single word or phrase.', '').strip()
                    if 'Please answer yes or no.' not in prompt:
                        prompt = prompt + ' Please answer yes or no.'
                        if (category, file, prompt) not in ground_truth:
                            prompt = prompt.replace(' Please answer yes or no.', '  Please answer yes or no.')
                    gt_ans = ground_truth[category, file, prompt]
                    dup = file, prompt, gt_ans
                    tup = file, prompt, gt_ans, answer
                    if dup in questions:
                        continue
                    questions.add(dup)
                    fp.write('\t'.join(tup) + '\n')

        evaluator = MMEEvaluator()
        scores = evaluator.process_result(result_dir)
        accel.print("MME Scores:")
        accel.print(scores)
        for eval_type, eval_scores in scores.items():
            accel.print("===========", eval_type, "===========")
            accel.print("total score:", eval_scores['total'], "\n")
            for task_name, score in eval_scores.items():
                accel.print("\t", task_name, " score:", score)
            accel.print("\n")
        return scores
    
    def evaluate_mmbench(self, model, accel):
        # MMBench Evaluation
        df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH))
        cur_df = df.copy()
        cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
        cur_df.insert(6, 'prediction', None)
        for inputs, answer in zip(self.inputs, self.gen_answers):
            cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer
        pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_results.xlsx")
        cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
        accel.print(f"Finished evaluating MMBench. Change {pred_pth} name to submission.xlsx and evaluate the result file saved to {pred_pth} on OpenCompass server.")
        return 
    
    def evaluate_mmbench_dev(self, model, accel):
        # MMBench Dev Evaluation
        df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_DEV))
        cur_df = df.copy()
        cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
        cur_df.insert(6, 'prediction', None)
        for inputs, answer in zip(self.inputs, self.gen_answers):
            cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer[0]
        pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_dev_results.xlsx")
        cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
        accuracy = (cur_df['prediction'] == cur_df['answer']).mean()
        accel.print(f'MMBench_dev Accuracy: {accuracy:.2%}')
        return 
    
    def evaluate_mmbench_cn(self, model, accel):
        # MMBench_CN Evaluation
        df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN))
        cur_df = df.copy()
        cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
        cur_df.insert(6, 'prediction', None)
        for inputs, answer in zip(self.inputs, self.gen_answers):
            cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer
        pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_cn_results.xlsx")
        cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
        accel.print(f"Finished evaluating MMBench_CN. Change {pred_pth} name to submission.xlsx and evaluate the result file saved to {pred_pth} on OpenCompass server.")
        return 
    
    def evaluate_mmbench_cn_dev(self, model, accel):
        # MMBench_CN Dev Evaluation
        df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN_DEV))
        cur_df = df.copy()
        cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
        cur_df.insert(6, 'prediction', None)
        for inputs, answer in zip(self.inputs, self.gen_answers):
            cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer[0]
        pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_cn_dev_results.xlsx")
        cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
        accuracy = (cur_df['prediction'] == cur_df['answer']).mean()
        accel.print(f'MMBench_CN_dev Accuracy: {accuracy:.2%}')
        return 
    
    def evaluate_qbench(self, model, accel):
        # QBench Evaluation
        pred_answers = [{'id': inputs['id'], 'answer': convert_to_choice(answer, inputs['candidates']), 'gt': inputs['gt'], 'candidates': inputs['candidates']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f'{model}_qbench_results.jsonl')
        with open(pred_pth, "w") as pf:
            pf.write(json.dumps(pred_answers) + "\n")

        results = [(pred['candidates'][pred['answer']] == pred['gt']) for pred in pred_answers]
        accel.print (f"QBench Accuracy: {np.mean(results)*100} %")
        return np.mean(results)*100
    
    def evaluate_mmvet(self, model, accel):
        # MM-Vet Evaluation
        cur_result = {f"{inputs['id']}": answer for inputs, answer in zip(self.inputs, self.gen_answers)}
        pred_pth = os.path.join(self.save_dir, f'{model}_mmvet_results.json')
        with open(pred_pth, 'w') as f:
            json.dump(cur_result, f, indent=2)
        
        accel.print(f"Finished evaluating MM-Vet. Evaluate the result file saved to {pred_pth}.")
        return 
    
    def evaluate_mmmu(self, model, accel):
        # MMMU Evaluation
        predictions = {inputs['id']: answer for inputs, answer in zip(self.inputs, self.gen_answers)}
        answers = {inputs['id']: {'ground_truth': inputs['gt'], 'question_type': inputs['question_type']} for inputs, answer in zip(self.inputs, self.gen_answers)}
        pred_pth = os.path.join(self.save_dir, f'{model}_mmmu_results.json')
        with open(pred_pth, "w") as f:
            json.dump(predictions, f, indent=2)
        ans_pth = os.path.join(self.save_dir, 'mmmu_answers.json')
        with open(ans_pth, "w") as pf:
            json.dump(answers, pf, indent=2)

        # group by category
        output_dict_w_cat = {}
        for data_id, parsed_pred in predictions.items():
            category = "_".join(data_id.split("_")[1:-1])
            if category not in output_dict_w_cat:
                output_dict_w_cat.update({category: {}})
            output_dict_w_cat[category].update({data_id: parsed_pred})

        # group by category
        answer_dict_w_cat = {}
        for data_id, parsed_pred in answers.items():
            category = "_".join(data_id.split("_")[1:-1])
            if category not in answer_dict_w_cat:
                answer_dict_w_cat.update({category: {}})
            answer_dict_w_cat[category].update({data_id: parsed_pred})

        evaluation_result = {}

        for category in CAT_SHORT2LONG.values():
            accel.print("Evaluating: {}".format(category))
            # get cat_outputs and cat_answers
            try:
                cat_outputs = output_dict_w_cat[category]
                cat_answers = answer_dict_w_cat[category]
            except KeyError:
                accel.print("Skipping {} for not found".format(category))
                continue

            exampels_to_eval = []
            for data_id, parsed_pred in cat_outputs.items():
                question_type = cat_answers[data_id]['question_type']
                if question_type != 'multiple-choice':
                    parsed_pred = parse_open_response(parsed_pred) # mainly for type consistency (make it number, etc.)
                else:
                    parsed_pred = parsed_pred

                exampels_to_eval.append({
                    "id": data_id,
                    "question_type": question_type,
                    "answer": cat_answers[data_id]['ground_truth'],
                    "parsed_pred": parsed_pred
                })

            judge_dict, metric_dict = evaluate(exampels_to_eval)
            metric_dict.update({"num_example": len(exampels_to_eval)})

            evaluation_result[category] = metric_dict

        printable_results = {}
        # add domain Subject
        for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
            in_domain_cat_results = {}
            for cat_name in in_domain_cats: # use the order in DOMAIN_CAT2SUB_CAT
                if cat_name in evaluation_result.keys():
                    in_domain_cat_results[cat_name] = evaluation_result[cat_name]
                else:
                    pass
            in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
            in_domain_data_num = sum([cat_results['num_example'] for cat_results in in_domain_cat_results.values()])
            printable_results['Overall-' + domain] = {"num": int(in_domain_data_num),
                                                    "acc": round(in_domain_ins_acc, 3)
                                                    }
            # add sub category
            for cat_name, cat_results in in_domain_cat_results.items():
                printable_results[cat_name] = {"num": int(cat_results['num_example']),
                                            "acc": round(cat_results['acc'], 3)
                                            }
            
        # table.append(["-----------------------------", "-----", "----"])
        all_ins_acc = calculate_ins_level_acc(evaluation_result)
        printable_results['Overall'] = {"num": sum([cat_results['num_example'] for cat_results in evaluation_result.values()]),
                                        "acc": round(all_ins_acc, 3)
                                        }

        accel.print(printable_results)
        return 
    
    def evaluate_mathvista(self, model, accel):
        # MathVista Evaluation
        pred_answers = [{'pid': inputs['id'], 'image': inputs['id'], 'response': answer, 
                         'question_type': inputs['question_type'], 'answer_type': inputs['answer_type'], 'metadata': inputs['metadata'], 
                         'choices': inputs['choices'], 'query': inputs['question'], 'precision': inputs['precision'],} for inputs, answer in zip(self.inputs, self.gen_answers)]
        predictions = {pred['pid']: pred for pred in pred_answers}
        pred_pth = os.path.join(self.save_dir, f"{model}_mathvista_results.json")
        json.dump(predictions, open(pred_pth, "w"))
        
        accel.print(f"Finished evaluating MathVista. Evaluate the result file saved to {pred_pth}.")
        return 
    
    def evaluate_ai2d(self, model, accel):
        # AI2D Evaluation
        pred_answers = [{'question_id': inputs['id'], 'answer': answer, 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_ai2d_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        # Compute accuracy
        pattern = re.compile(r'[A-Z]')
        results = [(char_to_int(pattern.findall(answer)[0]) == inputs['gt']) for inputs, answer in zip(self.inputs, self.gen_answers)]

        accel.print(f"AI2D Accuracy: {np.mean(results)*100} %")
        return np.mean(results)*100
    
    def evaluate_hallusionbench(self, model, accel):
        # HallusionBench Evaluation
        pred_answers = [{'answer': '1' if answer.lower().find('yes') != -1 else '0', 'question': inputs['question'], 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_hallusionbench_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        # Compute accuracy
        results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
        accel.print(f"HallusionBench Accuracy: {np.mean(results)*100} %")
        return np.mean(results)*100
    
    def evaluate_chartqa(self, model, accel):
        # ChartQA Evaluation
        # post processing
        processed_answers = []
        for x in self.gen_answers:
            if any(i.isdigit() for i in x):
                processed_answers.append(x.split(" ")[0])
            else:
                processed_answers.append(x)
        pred_answers = [{'answer': answer, 'question': inputs['question'], 'annotation': inputs['gt']} for inputs, answer in zip(self.inputs, processed_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_chartqa_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        # Compute accuracy
        acc = evaluate_relaxed_accuracy(pred_answers)
        accel.print(f"ChartQA Accuracy: {acc*100}%")
        return acc
    
    def evaluate_seed(self, model, accel):
        # SEED Evaluation
        pred_answers = [{'answer': answer, 'question': inputs['question'], 'question_id': inputs['id'], 'gt': inputs['gt'], 'question_type': inputs['question_type']} for inputs, answer in zip(self.inputs, self.gen_answers)]
        pred_pth = os.path.join(self.save_dir, f"{model}_seed_results.json")
        json.dump(pred_answers, open(pred_pth, "w"))

        # Compute accuracy
        results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
        accel.print (f"SEED Accuracy: {np.mean(results)*100} %")

        # Per question type accuracy
        for k, v in SEED_TYPES.items():
            sub_results = []
            for pred in pred_answers:
                if pred['question_type'] == k:
                    sub_results.append(pred['answer'] == pred['gt'])
            accel.print (f"{v}: {np.mean(sub_results)*100} %")
        
        return np.mean(results)*100
    
    def evaluate_llava(self, model, accel):
        # LLaVA-in-the-Wild Evaluation
        pred_answers = [{'question_id': inputs['id'],  'prompt': inputs['question'], 'text': answer, "answer_id": shortuuid.uuid()} for inputs, answer in zip(self.inputs, self.gen_answers)]
        sorted_answers = sorted(pred_answers, key=lambda x: x['question_id'])
        pred_pth = os.path.join(self.save_dir, f'{model}_llava_results.jsonl')
        ans_file = open(pred_pth, "w")
        for pred in sorted_answers:
            ans_file.write(json.dumps(pred) + "\n")
            ans_file.flush()
        ans_file.close()

        accel.print(f"Finished evaluating LLaVA-in-the-wild. Evaluate the result file saved to {pred_pth}.")
        return 
    
    def evaluate_blink(self, model, accel):
        # BLINK Evaluation
        # TODO
        return 
    
    def evaluate_mathverse(self, model, accel):
        # Mathverse Evaluation
        pred_answers = [{'sample_index' : inputs['id'], 'problem_index' : inputs['problem_index'], 'problem_version' : inputs['problem_version'],
                        'question' : inputs['origin_question'], 'answer' : inputs['gt'],
                        'question_type': inputs['question_type'], 'question_type': inputs['question_type'], 
                        'metadata': inputs['metadata'], 'query_wo': inputs['question'], 'query_cot' : inputs['query_cot'], 'model_answer' : answer} for inputs, answer in zip(self.inputs, self.gen_answers)]

        # answers = [item for item in pred_answers if item['problem_version'] != 'Text_Only']
        # text_only_answers = [item for item in pred_answers if item['problem_version'] == 'Text_Only']
        
        pred_pth = os.path.join(self.save_dir, f'{model}_mathverse_results.json')
        json.dump(pred_answers, open(pred_pth, "w"))
        pred_pth = os.path.join(self.save_dir, f'{model}_mathverse_scores.json')
        eval_mathverse(self.save_dir, pred_answers,f'{model}_mathverse_extracts.json', f'{model}_mathverse_scores.json')
        accel.print(f"Finished evaluating MathVerse. Evaluate the result file saved to {pred_pth}.")
        # TODO
        return 

    def evaluate_mmstar(self, model, accel):
        pred_answers = [{'question': inputs['question'],
                        'answer': inputs['answer'],
                        'category': inputs['category'],
                        'l2_category': inputs['l2_category'],
                        # 'bench': inputs['bench'],
                        'prediction' : answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
        
        pred_pth = os.path.join(self.save_dir, f'{model}_mmstar_results.json')
        json.dump(pred_answers, open(pred_pth, "w"))
        
        df = pd.DataFrame(pred_answers)
                        
        eval_mmstar(df, self.save_dir, f'{model}_mmstar_scores.json')
        pred_pth = os.path.join(self.save_dir, f'{model}_mmstar_scores.json')
        accel.print(f"Finished evaluating MMStar. Evaluate the result file saved to {pred_pth}.")