File size: 8,435 Bytes
ca20311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
# Written by jachiam

import argparse
import os.path as osp

import torch
import gc 

# =================#
# UNet Conversion #
# =================#

unet_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
]

unet_conversion_map_resnet = [
    # (stable-diffusion, HF Diffusers)
    ("in_layers.0", "norm1"),
    ("in_layers.2", "conv1"),
    ("out_layers.0", "norm2"),
    ("out_layers.3", "conv2"),
    ("emb_layers.1", "time_emb_proj"),
    ("skip_connection", "conv_shortcut"),
]

unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
    # loop over downblocks/upblocks

    for j in range(2):
        # loop over resnets/attentions for downblocks
        hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
        sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
        unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

        if i < 3:
            # no attention layers in down_blocks.3
            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
            sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

    for j in range(3):
        # loop over resnets/attentions for upblocks
        hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
        sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
        unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))

        if i > 0:
            # no attention layers in up_blocks.0
            hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
            sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
            unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))

    if i < 3:
        # no downsample in down_blocks.3
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
        sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))

        # no upsample in up_blocks.3
        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
        unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))

hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

for j in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{j}."
    sd_mid_res_prefix = f"middle_block.{2*j}."
    unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))


def convert_unet_state_dict(unet_state_dict):
    # buyer beware: this is a *brittle* function,
    # and correct output requires that all of these pieces interact in
    # the exact order in which I have arranged them.
    mapping = {k: k for k in unet_state_dict.keys()}
    for sd_name, hf_name in unet_conversion_map:
        mapping[hf_name] = sd_name
    for k, v in mapping.items():
        if "resnets" in k:
            for sd_part, hf_part in unet_conversion_map_resnet:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    for k, v in mapping.items():
        for sd_part, hf_part in unet_conversion_map_layer:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
    return new_state_dict


# ================#
# VAE Conversion #
# ================#

vae_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("nin_shortcut", "conv_shortcut"),
    ("norm_out", "conv_norm_out"),
    ("mid.attn_1.", "mid_block.attentions.0."),
]

for i in range(4):
    # down_blocks have two resnets
    for j in range(2):
        hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
        sd_down_prefix = f"encoder.down.{i}.block.{j}."
        vae_conversion_map.append((sd_down_prefix, hf_down_prefix))

    if i < 3:
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
        sd_downsample_prefix = f"down.{i}.downsample."
        vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))

        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"up.{3-i}.upsample."
        vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))

    # up_blocks have three resnets
    # also, up blocks in hf are numbered in reverse from sd
    for j in range(3):
        hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
        sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
        vae_conversion_map.append((sd_up_prefix, hf_up_prefix))

# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{i}."
    sd_mid_res_prefix = f"mid.block_{i+1}."
    vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))


vae_conversion_map_attn = [
    # (stable-diffusion, HF Diffusers)
    ("norm.", "group_norm."),
    ("q.", "query."),
    ("k.", "key."),
    ("v.", "value."),
    ("proj_out.", "proj_attn."),
]


def reshape_weight_for_sd(w):
    # convert HF linear weights to SD conv2d weights
    return w.reshape(*w.shape, 1, 1)


def convert_vae_state_dict(vae_state_dict):
    mapping = {k: k for k in vae_state_dict.keys()}
    for k, v in mapping.items():
        for sd_part, hf_part in vae_conversion_map:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    for k, v in mapping.items():
        if "attentions" in k:
            for sd_part, hf_part in vae_conversion_map_attn:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
    weights_to_convert = ["q", "k", "v", "proj_out"]
    print("Converting to CKPT ...")    
    for k, v in new_state_dict.items():
        for weight_name in weights_to_convert:
            if f"mid.attn_1.{weight_name}.weight" in k:
                new_state_dict[k] = reshape_weight_for_sd(v)
    return new_state_dict


# =========================#
# Text Encoder Conversion #
# =========================#
# pretty much a no-op


def convert_text_enc_state_dict(text_enc_dict):
    return text_enc_dict


def convert(model_path, checkpoint_path):    
    unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
    vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
    text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")

    # Convert the UNet model
    unet_state_dict = torch.load(unet_path, map_location='cpu')
    unet_state_dict = convert_unet_state_dict(unet_state_dict)
    unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}

    # Convert the VAE model
    vae_state_dict = torch.load(vae_path, map_location='cpu')
    vae_state_dict = convert_vae_state_dict(vae_state_dict)
    vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}

    # Convert the text encoder model
    text_enc_dict = torch.load(text_enc_path, map_location='cpu')
    text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
    text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}

    # Put together new checkpoint
    state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
    
    state_dict = {k:v.half() for k,v in state_dict.items()}
    state_dict = {"state_dict": state_dict}
    torch.save(state_dict, checkpoint_path)
    del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
    torch.cuda.empty_cache()
    gc.collect()