Spaces:
Running
Running
File size: 28,210 Bytes
a950ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
from typing import Sequence, Tuple, Type, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.nn import LayerNorm
from monai.networks.blocks import MLPBlock as Mlp
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock
from monai.networks.layers import DropPath, trunc_normal_
from monai.utils import ensure_tuple_rep, optional_import
rearrange, _ = optional_import("einops", name="rearrange")
def window_partition(x, window_size):
"""window partition operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x: input tensor.
window_size: local window size.
"""
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
x = x.view(
b,
d // window_size[0],
window_size[0],
h // window_size[1],
window_size[1],
w // window_size[2],
window_size[2],
c,
)
windows = (
x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, window_size[0] * window_size[1] * window_size[2], c)
)
elif len(x_shape) == 4:
b, h, w, c = x.shape
x = x.view(b, h // window_size[0], window_size[0], w // window_size[1], window_size[1], c)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0] * window_size[1], c)
return windows
def window_reverse(windows, window_size, dims):
"""window reverse operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
windows: windows tensor.
window_size: local window size.
dims: dimension values.
"""
if len(dims) == 4:
b, d, h, w = dims
x = windows.view(
b,
d // window_size[0],
h // window_size[1],
w // window_size[2],
window_size[0],
window_size[1],
window_size[2],
-1,
)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(b, d, h, w, -1)
elif len(dims) == 3:
b, h, w = dims
x = windows.view(b, h // window_size[0], w // window_size[0], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
return x
def get_window_size(x_size, window_size, shift_size=None):
"""Computing window size based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x_size: input size.
window_size: local window size.
shift_size: window shifting size.
"""
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class WindowAttention(nn.Module):
"""
Window based multi-head self attention module with relative position bias based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
qkv_bias: add a learnable bias to query, key, value.
attn_drop: attention dropout rate.
proj_drop: dropout rate of output.
"""
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
mesh_args = torch.meshgrid.__kwdefaults__
if len(self.window_size) == 3:
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1),
num_heads,
)
)
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
elif len(self.window_size) == 2:
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
)
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask):
b, n, c = x.shape
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.clone()[:n, :n].reshape(-1)
].reshape(n, n, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nw = mask.shape[0]
attn = attn.view(b // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, n, n)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
"""
Swin Transformer block based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
shift_size: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop: float = 0.0,
attn_drop: float = 0.0,
drop_path: float = 0.0,
act_layer: str = "GELU",
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
shift_size: window shift size.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: stochastic depth rate.
act_layer: activation layer.
norm_layer: normalization layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(hidden_size=dim, mlp_dim=mlp_hidden_dim, act=act_layer, dropout_rate=drop, dropout_mode="swin")
def forward_part1(self, x, mask_matrix):
x_shape = x.size()
x = self.norm1(x)
if len(x_shape) == 5:
b, d, h, w, c = x.shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - d % window_size[0]) % window_size[0]
pad_b = (window_size[1] - h % window_size[1]) % window_size[1]
pad_r = (window_size[2] - w % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, dp, hp, wp, _ = x.shape
dims = [b, dp, hp, wp]
elif len(x_shape) == 4:
b, h, w, c = x.shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
pad_l = pad_t = 0
pad_r = (window_size[0] - h % window_size[0]) % window_size[0]
pad_b = (window_size[1] - w % window_size[1]) % window_size[1]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, hp, wp, _ = x.shape
dims = [b, hp, wp]
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
x_windows = window_partition(shifted_x, window_size)
attn_windows = self.attn(x_windows, mask=attn_mask)
attn_windows = attn_windows.view(-1, *(window_size + (c,)))
shifted_x = window_reverse(attn_windows, window_size, dims)
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2))
else:
x = shifted_x
if len(x_shape) == 5:
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
x = x[:, :d, :h, :w, :].contiguous()
elif len(x_shape) == 4:
if pad_r > 0 or pad_b > 0:
x = x[:, :h, :w, :].contiguous()
return x
def forward_part2(self, x):
return self.drop_path(self.mlp(self.norm2(x)))
def load_from(self, weights, n_block, layer):
root = f"module.{layer}.0.blocks.{n_block}."
block_names = [
"norm1.weight",
"norm1.bias",
"attn.relative_position_bias_table",
"attn.relative_position_index",
"attn.qkv.weight",
"attn.qkv.bias",
"attn.proj.weight",
"attn.proj.bias",
"norm2.weight",
"norm2.bias",
"mlp.fc1.weight",
"mlp.fc1.bias",
"mlp.fc2.weight",
"mlp.fc2.bias",
]
with torch.no_grad():
self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]])
self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]])
self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]])
self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]])
self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]])
self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]])
self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]])
self.attn.proj.bias.copy_(weights["state_dict"][root + block_names[7]])
self.norm2.weight.copy_(weights["state_dict"][root + block_names[8]])
self.norm2.bias.copy_(weights["state_dict"][root + block_names[9]])
self.mlp.linear1.weight.copy_(weights["state_dict"][root + block_names[10]])
self.mlp.linear1.bias.copy_(weights["state_dict"][root + block_names[11]])
self.mlp.linear2.weight.copy_(weights["state_dict"][root + block_names[12]])
self.mlp.linear2.bias.copy_(weights["state_dict"][root + block_names[13]])
def forward(self, x, mask_matrix):
shortcut = x
if self.use_checkpoint:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
else:
x = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.use_checkpoint:
x = x + checkpoint.checkpoint(self.forward_part2, x)
else:
x = x + self.forward_part2(x)
return x
class PatchMerging(nn.Module):
"""
Patch merging layer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self, dim: int, norm_layer: Type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3
) -> None: # type: ignore
"""
Args:
dim: number of feature channels.
norm_layer: normalization layer.
spatial_dims: number of spatial dims.
"""
super().__init__()
self.dim = dim
if spatial_dims == 3:
self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False)
self.norm = norm_layer(8 * dim)
elif spatial_dims == 2:
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, d % 2, 0, w % 2, 0, h % 2))
x0 = x[:, 0::2, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, 0::2, :]
x2 = x[:, 0::2, 1::2, 0::2, :]
x3 = x[:, 0::2, 0::2, 1::2, :]
x4 = x[:, 1::2, 0::2, 1::2, :]
x5 = x[:, 0::2, 1::2, 0::2, :]
x6 = x[:, 0::2, 0::2, 1::2, :]
x7 = x[:, 1::2, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1)
elif len(x_shape) == 4:
b, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2))
x0 = x[:, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, :]
x2 = x[:, 0::2, 1::2, :]
x3 = x[:, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3], -1)
x = self.norm(x)
x = self.reduction(x)
return x
def compute_mask(dims, window_size, shift_size, device):
"""Computing region masks based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
dims: dimension values.
window_size: local window size.
shift_size: shift size.
device: device.
"""
cnt = 0
if len(dims) == 3:
d, h, w = dims
img_mask = torch.zeros((1, d, h, w, 1), device=device)
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None):
img_mask[:, d, h, w, :] = cnt
cnt += 1
elif len(dims) == 2:
h, w = dims
img_mask = torch.zeros((1, h, w, 1), device=device)
for h in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for w in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size)
mask_windows = mask_windows.squeeze(-1)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
class BasicLayer(nn.Module):
"""
Basic Swin Transformer layer in one stage based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
depth: int,
num_heads: int,
window_size: Sequence[int],
drop_path: list,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
drop: float = 0.0,
attn_drop: float = 0.0,
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
downsample: isinstance = None, # type: ignore
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
depths: number of layers in each stage.
num_heads: number of attention heads.
window_size: local window size.
drop_path: stochastic depth rate.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
norm_layer: normalization layer.
downsample: downsample layer at the end of the layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.no_shift = tuple(0 for i in window_size)
self.depth = depth
self.use_checkpoint = use_checkpoint
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=self.window_size,
shift_size=self.no_shift if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
use_checkpoint=use_checkpoint,
)
for i in range(depth)
]
)
self.downsample = downsample
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer, spatial_dims=len(self.window_size))
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, c, d, h, w = x_shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c d h w -> b d h w c")
dp = int(np.ceil(d / window_size[0])) * window_size[0]
hp = int(np.ceil(h / window_size[1])) * window_size[1]
wp = int(np.ceil(w / window_size[2])) * window_size[2]
attn_mask = compute_mask([dp, hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, d, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b d h w c -> b c d h w")
elif len(x_shape) == 4:
b, c, h, w = x_shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c h w -> b h w c")
hp = int(np.ceil(h / window_size[0])) * window_size[0]
wp = int(np.ceil(w / window_size[1])) * window_size[1]
attn_mask = compute_mask([hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b h w c -> b c h w")
return x
class SwinTransformer(nn.Module):
"""
Swin Transformer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
in_chans: int,
embed_dim: int,
window_size: Sequence[int],
patch_size: Sequence[int],
depths: Sequence[int],
num_heads: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
patch_norm: bool = False,
use_checkpoint: bool = False,
spatial_dims: int = 3,
) -> None:
"""
Args:
in_chans: dimension of input channels.
embed_dim: number of linear projection output channels.
window_size: local window size.
patch_size: patch size.
depths: number of layers in each stage.
num_heads: number of attention heads.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
drop_path_rate: stochastic depth rate.
norm_layer: normalization layer.
patch_norm: add normalization after patch embedding.
use_checkpoint: use gradient checkpointing for reduced memory usage.
spatial_dims: spatial dimension.
"""
super().__init__()
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.window_size = window_size
self.patch_size = patch_size
self.patch_embed = PatchEmbed(
patch_size=self.patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None, # type: ignore
spatial_dims=spatial_dims,
)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
# self.layers1 = nn.ModuleList()
# self.layers2 = nn.ModuleList()
# self.layers3 = nn.ModuleList()
# self.layers4 = nn.ModuleList()
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=self.window_size,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
downsample=PatchMerging,
use_checkpoint=use_checkpoint,
)
self.layers.append(layer)
# if i_layer == 0:
# self.layers1.append(layer)
# elif i_layer == 1:
# self.layers2.append(layer)
# elif i_layer == 2:
# self.layers3.append(layer)
# elif i_layer == 3:
# self.layers4.append(layer)
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
def proj_out(self, x, normalize=False):
if normalize:
x_shape = x.size()
if len(x_shape) == 5:
n, ch, d, h, w = x_shape
x = rearrange(x, "n c d h w -> n d h w c")
x = F.layer_norm(x, [ch])
x = rearrange(x, "n d h w c -> n c d h w")
elif len(x_shape) == 4:
n, ch, h, w = x_shape
x = rearrange(x, "n c h w -> n h w c")
x = F.layer_norm(x, [ch])
x = rearrange(x, "n h w c -> n c h w")
return x
def forward(self, x, normalize=True):
# x input: [B*sample, C(1), H, W, D]
# x = rearrange(x, "b c h w d -> b c d h w")
# print('>> input: ', x.shape)
x = self.patch_embed(x)
# print('>> patch_embed: ', x.shape)
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x.contiguous())
# print('>> layer: ', x.shape)
return x
# # x0_out = self.proj_out(x0, normalize)
# x1 = self.layers1[0](x0.contiguous())
# # x1_out = self.proj_out(x1, normalize)
# x2 = self.layers2[0](x1.contiguous())
# # x2_out = self.proj_out(x2, normalize)
# x3 = self.layers3[0](x2.contiguous())
# # x3_out = self.proj_out(x3, normalize)
# x4 = self.layers4[0](x3.contiguous())
# # x4_out = self.proj_out(x4, normalize)
# # return [x0_out, x1_out, x2_out, x3_out, x4_out]
|