Spaces:
Build error
Build error
File size: 11,378 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import json
import logging
import numpy as np
import os
from collections import OrderedDict
from typing import Optional, Union
import pycocotools.mask as mask_util
import torch
from PIL import Image
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.comm import all_gather, is_main_process, synchronize
from detectron2.utils.file_io import PathManager
from .evaluator import DatasetEvaluator
_CV2_IMPORTED = True
try:
import cv2 # noqa
except ImportError:
# OpenCV is an optional dependency at the moment
_CV2_IMPORTED = False
def load_image_into_numpy_array(
filename: str,
copy: bool = False,
dtype: Optional[Union[np.dtype, str]] = None,
) -> np.ndarray:
with PathManager.open(filename, "rb") as f:
array = np.array(Image.open(f), copy=copy, dtype=dtype)
return array
class SemSegEvaluator(DatasetEvaluator):
"""
Evaluate semantic segmentation metrics.
"""
def __init__(
self,
dataset_name,
distributed=True,
output_dir=None,
*,
sem_seg_loading_fn=load_image_into_numpy_array,
num_classes=None,
ignore_label=None,
):
"""
Args:
dataset_name (str): name of the dataset to be evaluated.
distributed (bool): if True, will collect results from all ranks for evaluation.
Otherwise, will evaluate the results in the current process.
output_dir (str): an output directory to dump results.
sem_seg_loading_fn: function to read sem seg file and load into numpy array.
Default provided, but projects can customize.
num_classes, ignore_label: deprecated argument
"""
self._logger = logging.getLogger(__name__)
if num_classes is not None:
self._logger.warn(
"SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata."
)
if ignore_label is not None:
self._logger.warn(
"SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata."
)
self._dataset_name = dataset_name
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self.input_file_to_gt_file = {
dataset_record["file_name"]: dataset_record["sem_seg_file_name"]
for dataset_record in DatasetCatalog.get(dataset_name)
}
meta = MetadataCatalog.get(dataset_name)
# Dict that maps contiguous training ids to COCO category ids
try:
c2d = meta.stuff_dataset_id_to_contiguous_id
self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()}
except AttributeError:
self._contiguous_id_to_dataset_id = None
self._class_names = meta.stuff_classes
self.sem_seg_loading_fn = sem_seg_loading_fn
self._num_classes = len(meta.stuff_classes)
if num_classes is not None:
assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}"
self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label
# This is because cv2.erode did not work for int datatype. Only works for uint8.
self._compute_boundary_iou = True
if not _CV2_IMPORTED:
self._compute_boundary_iou = False
self._logger.warn(
"""Boundary IoU calculation requires OpenCV. B-IoU metrics are
not going to be computed because OpenCV is not available to import."""
)
if self._num_classes >= np.iinfo(np.uint8).max:
self._compute_boundary_iou = False
self._logger.warn(
f"""SemSegEvaluator(num_classes) is more than supported value for Boundary IoU calculation!
B-IoU metrics are not going to be computed. Max allowed value (exclusive)
for num_classes for calculating Boundary IoU is {np.iinfo(np.uint8).max}.
The number of classes of dataset {self._dataset_name} is {self._num_classes}"""
)
def reset(self):
self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
self._b_conf_matrix = np.zeros(
(self._num_classes + 1, self._num_classes + 1), dtype=np.int64
)
self._predictions = []
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a model.
It is a list of dicts. Each dict corresponds to an image and
contains keys like "height", "width", "file_name".
outputs: the outputs of a model. It is either list of semantic segmentation predictions
(Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic
segmentation prediction in the same format.
"""
for input, output in zip(inputs, outputs):
output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)
pred = np.array(output, dtype=int)
gt_filename = self.input_file_to_gt_file[input["file_name"]]
gt = self.sem_seg_loading_fn(gt_filename, dtype=int)
gt[gt == self._ignore_label] = self._num_classes
self._conf_matrix += np.bincount(
(self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1),
minlength=self._conf_matrix.size,
).reshape(self._conf_matrix.shape)
if self._compute_boundary_iou:
b_gt = self._mask_to_boundary(gt.astype(np.uint8))
b_pred = self._mask_to_boundary(pred.astype(np.uint8))
self._b_conf_matrix += np.bincount(
(self._num_classes + 1) * b_pred.reshape(-1) + b_gt.reshape(-1),
minlength=self._conf_matrix.size,
).reshape(self._conf_matrix.shape)
self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"]))
def evaluate(self):
"""
Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
* Mean intersection-over-union averaged across classes (mIoU)
* Frequency Weighted IoU (fwIoU)
* Mean pixel accuracy averaged across classes (mACC)
* Pixel Accuracy (pACC)
"""
if self._distributed:
synchronize()
conf_matrix_list = all_gather(self._conf_matrix)
b_conf_matrix_list = all_gather(self._b_conf_matrix)
self._predictions = all_gather(self._predictions)
self._predictions = list(itertools.chain(*self._predictions))
if not is_main_process():
return
self._conf_matrix = np.zeros_like(self._conf_matrix)
for conf_matrix in conf_matrix_list:
self._conf_matrix += conf_matrix
self._b_conf_matrix = np.zeros_like(self._b_conf_matrix)
for b_conf_matrix in b_conf_matrix_list:
self._b_conf_matrix += b_conf_matrix
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._predictions))
acc = np.full(self._num_classes, np.nan, dtype=float)
iou = np.full(self._num_classes, np.nan, dtype=float)
tp = self._conf_matrix.diagonal()[:-1].astype(float)
pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(float)
class_weights = pos_gt / np.sum(pos_gt)
pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(float)
acc_valid = pos_gt > 0
acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
union = pos_gt + pos_pred - tp
iou_valid = np.logical_and(acc_valid, union > 0)
iou[iou_valid] = tp[iou_valid] / union[iou_valid]
macc = np.sum(acc[acc_valid]) / np.sum(acc_valid)
miou = np.sum(iou[iou_valid]) / np.sum(iou_valid)
fiou = np.sum(iou[iou_valid] * class_weights[iou_valid])
pacc = np.sum(tp) / np.sum(pos_gt)
if self._compute_boundary_iou:
b_iou = np.full(self._num_classes, np.nan, dtype=float)
b_tp = self._b_conf_matrix.diagonal()[:-1].astype(float)
b_pos_gt = np.sum(self._b_conf_matrix[:-1, :-1], axis=0).astype(float)
b_pos_pred = np.sum(self._b_conf_matrix[:-1, :-1], axis=1).astype(float)
b_union = b_pos_gt + b_pos_pred - b_tp
b_iou_valid = b_union > 0
b_iou[b_iou_valid] = b_tp[b_iou_valid] / b_union[b_iou_valid]
res = {}
res["mIoU"] = 100 * miou
res["fwIoU"] = 100 * fiou
for i, name in enumerate(self._class_names):
res[f"IoU-{name}"] = 100 * iou[i]
if self._compute_boundary_iou:
res[f"BoundaryIoU-{name}"] = 100 * b_iou[i]
res[f"min(IoU, B-Iou)-{name}"] = 100 * min(iou[i], b_iou[i])
res["mACC"] = 100 * macc
res["pACC"] = 100 * pacc
for i, name in enumerate(self._class_names):
res[f"ACC-{name}"] = 100 * acc[i]
if self._output_dir:
file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(res, f)
results = OrderedDict({"sem_seg": res})
self._logger.info(results)
return results
def encode_json_sem_seg(self, sem_seg, input_file_name):
"""
Convert semantic segmentation to COCO stuff format with segments encoded as RLEs.
See http://cocodataset.org/#format-results
"""
json_list = []
for label in np.unique(sem_seg):
if self._contiguous_id_to_dataset_id is not None:
assert (
label in self._contiguous_id_to_dataset_id
), "Label {} is not in the metadata info for {}".format(label, self._dataset_name)
dataset_id = self._contiguous_id_to_dataset_id[label]
else:
dataset_id = int(label)
mask = (sem_seg == label).astype(np.uint8)
mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0]
mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
json_list.append(
{"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle}
)
return json_list
def _mask_to_boundary(self, mask: np.ndarray, dilation_ratio=0.02):
assert mask.ndim == 2, "mask_to_boundary expects a 2-dimensional image"
h, w = mask.shape
diag_len = np.sqrt(h**2 + w**2)
dilation = max(1, int(round(dilation_ratio * diag_len)))
kernel = np.ones((3, 3), dtype=np.uint8)
padded_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
eroded_mask_with_padding = cv2.erode(padded_mask, kernel, iterations=dilation)
eroded_mask = eroded_mask_with_padding[1:-1, 1:-1]
boundary = mask - eroded_mask
return boundary
|