Spaces:
Configuration error
Configuration error
File size: 2,995 Bytes
2bab8da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import cv2
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from pygame import mixer
st.title('Driver Drowziness Detection')
st.sidebar.subheader('About')
st.sidebar.write('A computer vision system made with the help of opencv that can automatically detect driver drowsiness in a real-time video stream and then play an alarm if the driver appears to be drowsy.')
dir_path= (r'Models')
model = load_model(dir_path)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
st.header("Webcam Live Feed")
run = st.checkbox('Click to Run/Off the cam',value=True)
FRAME_WINDOW = st.image([])
cap = cv2.VideoCapture(0)
mixer.init()
sound= mixer.Sound(r'alarm.wav')
Score = 0
eye_cond = 1
st.subheader('Rules')
st.write('The more focused you are on your ride, the lower your drowziness score')
st.write('Alarm clock sounds when score reaches 25')
st.markdown('To Stop the Alarm Just **Focus on Your Drive**')
while run:
col1,col2 = st.sidebar.columns(2)
with col1:
st.subheader('Score = ' + str(Score))
with col2:
pass
_, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
height,width = frame.shape[0:2]
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces= face_cascade.detectMultiScale(gray, scaleFactor= 1.2, minNeighbors=3)
eyes= eye_cascade.detectMultiScale(gray, scaleFactor= 1.1, minNeighbors=1)
frame2 = cv2.rectangle(frame, (0,height-50),(200,height),(0,0,0),thickness=cv2.FILLED)
sc = st.empty()
def on_update():
data = getNewData()
sc.text('Score :' + str(data))
for (x,y,w,h) in faces:
cv2.rectangle(frame,pt1=(x,y),pt2=(x+w,y+h), color= (255,0,0), thickness=3 )
for (ex,ey,ew,eh) in eyes:
# cv2.rectangle(frame,pt1=(ex,ey),pt2=(ex+ew,ey+eh), color= (255,0,0), thickness=5)
# preprocessing steps
eye= frame[ey:ey+eh,ex:ex+ew]
eye= cv2.resize(eye,(80,80))
eye= eye/255
eye= eye.reshape(80,80,3)
eye= np.expand_dims(eye,axis=0)
# preprocessing is done now model prediction
prediction = model.predict(eye)
# if eyes are closed
print(prediction)
if prediction[0][0]>0.25:
eye_cond=0
Score=Score+1
if(Score>25):
try:
sound.play()
except:
pass
# if eyes are open
elif prediction[0][1]>0.75:
eye_cond=1
Score = Score-1
if (Score<0):
Score=0
cv2.putText(frame,'Score'+str(Score),(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255),
thickness=1,lineType=cv2.LINE_AA)
FRAME_WINDOW.image(frame)
else:
st.write('Stopped')
|