File size: 1,363 Bytes
4833ab8
 
 
a784eb7
 
 
 
4833ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
f864b43
fc3ed42
 
4833ab8
 
a784eb7
 
 
 
 
43f1a64
4833ab8
fc3ed42
f864b43
 
4833ab8
 
f864b43
fc3ed42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import torch
from datasets import load_dataset
import torch
from peft import PeftModel    
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, BitsAndBytesConfig
from torch import cuda, bfloat16
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    # GPT2LMHeadModel,
    # GPT2Tokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
import os
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model_name = "Ayush28/Llama-2-7b"
model_token= "Ayush28/Llama-2-tokenizer"
trained_model = AutoPeftModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.bfloat16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type='nf4'
            ),    torch_dtype=torch.bfloat16,offload_folder="offload/",
)
tokenizer = AutoTokenizer.from_pretrained(model_token)

prompt = "I purchased a defective product from a store, and the store is refusing to replace or refund it. What do I do?"
pipe = pipeline(task="text-generation", model=trained_model, tokenizer=tokenizer, max_length=1024)
result = pipe(f"###Instruction:{prompt}")

print(result[0]['generated_text'])