Spaces:
Runtime error
Runtime error
File size: 17,644 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
from typing import Dict, List, Union
import torch
from coqpit import Coqpit
from torch import nn
from trainer.logging.tensorboard_logger import TensorboardLogger
from TTS.tts.layers.overflow.common_layers import Encoder, OverflowUtils
from TTS.tts.layers.overflow.decoder import Decoder
from TTS.tts.layers.overflow.neural_hmm import NeuralHMM
from TTS.tts.layers.overflow.plotting_utils import (
get_spec_from_most_probable_state,
plot_transition_probabilities_to_numpy,
)
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.generic_utils import format_aux_input
from TTS.utils.io import load_fsspec
class Overflow(BaseTTS):
"""OverFlow TTS model.
Paper::
https://arxiv.org/abs/2211.06892
Paper abstract::
Neural HMMs are a type of neural transducer recently proposed for
sequence-to-sequence modelling in text-to-speech. They combine the best features
of classic statistical speech synthesis and modern neural TTS, requiring less
data and fewer training updates, and are less prone to gibberish output caused
by neural attention failures. In this paper, we combine neural HMM TTS with
normalising flows for describing the highly non-Gaussian distribution of speech
acoustics. The result is a powerful, fully probabilistic model of durations and
acoustics that can be trained using exact maximum likelihood. Compared to
dominant flow-based acoustic models, our approach integrates autoregression for
improved modelling of long-range dependences such as utterance-level prosody.
Experiments show that a system based on our proposal gives more accurate
pronunciations and better subjective speech quality than comparable methods,
whilst retaining the original advantages of neural HMMs. Audio examples and code
are available at https://shivammehta25.github.io/OverFlow/.
Note:
- Neural HMMs uses flat start initialization i.e it computes the means and std and transition probabilities
of the dataset and uses them to initialize the model. This benefits the model and helps with faster learning
If you change the dataset or want to regenerate the parameters change the `force_generate_statistics` and
`mel_statistics_parameter_path` accordingly.
- To enable multi-GPU training, set the `use_grad_checkpointing=False` in config.
This will significantly increase the memory usage. This is because to compute
the actual data likelihood (not an approximation using MAS/Viterbi) we must use
all the states at the previous time step during the forward pass to decide the
probability distribution at the current step i.e the difference between the forward
algorithm and viterbi approximation.
Check :class:`TTS.tts.configs.overflow.OverFlowConfig` for class arguments.
"""
def __init__(
self,
config: "OverFlowConfig",
ap: "AudioProcessor" = None,
tokenizer: "TTSTokenizer" = None,
speaker_manager: SpeakerManager = None,
):
super().__init__(config, ap, tokenizer, speaker_manager)
# pass all config fields to `self`
# for fewer code change
self.config = config
for key in config:
setattr(self, key, config[key])
self.decoder_output_dim = config.out_channels
self.encoder = Encoder(config.num_chars, config.state_per_phone, config.encoder_in_out_features)
self.neural_hmm = NeuralHMM(
frame_channels=self.out_channels,
ar_order=self.ar_order,
deterministic_transition=self.deterministic_transition,
encoder_dim=self.encoder_in_out_features,
prenet_type=self.prenet_type,
prenet_dim=self.prenet_dim,
prenet_n_layers=self.prenet_n_layers,
prenet_dropout=self.prenet_dropout,
prenet_dropout_at_inference=self.prenet_dropout_at_inference,
memory_rnn_dim=self.memory_rnn_dim,
outputnet_size=self.outputnet_size,
flat_start_params=self.flat_start_params,
std_floor=self.std_floor,
use_grad_checkpointing=self.use_grad_checkpointing,
)
self.decoder = Decoder(
self.out_channels,
self.hidden_channels_dec,
self.kernel_size_dec,
self.dilation_rate,
self.num_flow_blocks_dec,
self.num_block_layers,
dropout_p=self.dropout_p_dec,
num_splits=self.num_splits,
num_squeeze=self.num_squeeze,
sigmoid_scale=self.sigmoid_scale,
c_in_channels=self.c_in_channels,
)
self.register_buffer("mean", torch.tensor(0))
self.register_buffer("std", torch.tensor(1))
def update_mean_std(self, statistics_dict: Dict):
self.mean.data = torch.tensor(statistics_dict["mean"])
self.std.data = torch.tensor(statistics_dict["std"])
def preprocess_batch(self, text, text_len, mels, mel_len):
if self.mean.item() == 0 or self.std.item() == 1:
statistics_dict = torch.load(self.mel_statistics_parameter_path)
self.update_mean_std(statistics_dict)
mels = self.normalize(mels)
return text, text_len, mels, mel_len
def normalize(self, x):
return x.sub(self.mean).div(self.std)
def inverse_normalize(self, x):
return x.mul(self.std).add(self.mean)
def forward(self, text, text_len, mels, mel_len):
"""
Forward pass for training and computing the log likelihood of a given batch.
Shapes:
Shapes:
text: :math:`[B, T_in]`
text_len: :math:`[B]`
mels: :math:`[B, T_out, C]`
mel_len: :math:`[B]`
"""
text, text_len, mels, mel_len = self.preprocess_batch(text, text_len, mels, mel_len)
encoder_outputs, encoder_output_len = self.encoder(text, text_len)
z, z_lengths, logdet = self.decoder(mels.transpose(1, 2), mel_len)
log_probs, fwd_alignments, transition_vectors, means = self.neural_hmm(
encoder_outputs, encoder_output_len, z, z_lengths
)
outputs = {
"log_probs": log_probs + logdet,
"alignments": fwd_alignments,
"transition_vectors": transition_vectors,
"means": means,
}
return outputs
@staticmethod
def _training_stats(batch):
stats = {}
stats["avg_text_length"] = batch["text_lengths"].float().mean()
stats["avg_spec_length"] = batch["mel_lengths"].float().mean()
stats["avg_text_batch_occupancy"] = (batch["text_lengths"].float() / batch["text_lengths"].float().max()).mean()
stats["avg_spec_batch_occupancy"] = (batch["mel_lengths"].float() / batch["mel_lengths"].float().max()).mean()
return stats
def train_step(self, batch: dict, criterion: nn.Module):
text_input = batch["text_input"]
text_lengths = batch["text_lengths"]
mel_input = batch["mel_input"]
mel_lengths = batch["mel_lengths"]
outputs = self.forward(
text=text_input,
text_len=text_lengths,
mels=mel_input,
mel_len=mel_lengths,
)
loss_dict = criterion(outputs["log_probs"] / (mel_lengths.sum() + text_lengths.sum()))
# for printing useful statistics on terminal
loss_dict.update(self._training_stats(batch))
return outputs, loss_dict
def eval_step(self, batch: Dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def _format_aux_input(self, aux_input: Dict, default_input_dict):
"""Set missing fields to their default value.
Args:
aux_inputs (Dict): Dictionary containing the auxiliary inputs.
"""
default_input_dict = default_input_dict.copy()
default_input_dict.update(
{
"sampling_temp": self.sampling_temp,
"max_sampling_time": self.max_sampling_time,
"duration_threshold": self.duration_threshold,
}
)
if aux_input:
return format_aux_input(default_input_dict, aux_input)
return default_input_dict
@torch.no_grad()
def inference(
self,
text: torch.Tensor,
aux_input={"x_lengths": None, "sampling_temp": None, "max_sampling_time": None, "duration_threshold": None},
): # pylint: disable=dangerous-default-value
"""Sampling from the model
Args:
text (torch.Tensor): :math:`[B, T_in]`
aux_inputs (_type_, optional): _description_. Defaults to None.
Returns:
outputs: Dictionary containing the following
- mel (torch.Tensor): :math:`[B, T_out, C]`
- hmm_outputs_len (torch.Tensor): :math:`[B]`
- state_travelled (List[List[int]]): List of lists containing the state travelled for each sample in the batch.
- input_parameters (list[torch.FloatTensor]): Input parameters to the neural HMM.
- output_parameters (list[torch.FloatTensor]): Output parameters to the neural HMM.
"""
default_input_dict = {
"x_lengths": torch.sum(text != 0, dim=1),
}
aux_input = self._format_aux_input(aux_input, default_input_dict)
encoder_outputs, encoder_output_len = self.encoder.inference(text, aux_input["x_lengths"])
outputs = self.neural_hmm.inference(
encoder_outputs,
encoder_output_len,
sampling_temp=aux_input["sampling_temp"],
max_sampling_time=aux_input["max_sampling_time"],
duration_threshold=aux_input["duration_threshold"],
)
mels, mel_outputs_len, _ = self.decoder(
outputs["hmm_outputs"].transpose(1, 2), outputs["hmm_outputs_len"], reverse=True
)
mels = self.inverse_normalize(mels.transpose(1, 2))
outputs.update({"model_outputs": mels, "model_outputs_len": mel_outputs_len})
outputs["alignments"] = OverflowUtils.double_pad(outputs["alignments"])
return outputs
@staticmethod
def get_criterion():
return NLLLoss()
@staticmethod
def init_from_config(config: "OverFlowConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):
"""Initiate model from config
Args:
config (VitsConfig): Model config.
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
Defaults to None.
verbose (bool): If True, print init messages. Defaults to True.
"""
from TTS.utils.audio import AudioProcessor
ap = AudioProcessor.init_from_config(config, verbose)
tokenizer, new_config = TTSTokenizer.init_from_config(config)
speaker_manager = SpeakerManager.init_from_config(config, samples)
return Overflow(new_config, ap, tokenizer, speaker_manager)
def load_checkpoint(
self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False
): # pylint: disable=unused-argument, redefined-builtin
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
if eval:
self.eval()
self.decoder.store_inverse()
assert not self.training
def on_init_start(self, trainer):
"""If the current dataset does not have normalisation statistics and initialisation transition_probability it computes them otherwise loads."""
if not os.path.isfile(trainer.config.mel_statistics_parameter_path) or trainer.config.force_generate_statistics:
dataloader = trainer.get_train_dataloader(
training_assets=None, samples=trainer.train_samples, verbose=False
)
print(
f" | > Data parameters not found for: {trainer.config.mel_statistics_parameter_path}. Computing mel normalization parameters..."
)
data_mean, data_std, init_transition_prob = OverflowUtils.get_data_parameters_for_flat_start(
dataloader, trainer.config.out_channels, trainer.config.state_per_phone
)
print(
f" | > Saving data parameters to: {trainer.config.mel_statistics_parameter_path}: value: {data_mean, data_std, init_transition_prob}"
)
statistics = {
"mean": data_mean.item(),
"std": data_std.item(),
"init_transition_prob": init_transition_prob.item(),
}
torch.save(statistics, trainer.config.mel_statistics_parameter_path)
else:
print(
f" | > Data parameters found for: {trainer.config.mel_statistics_parameter_path}. Loading mel normalization parameters..."
)
statistics = torch.load(trainer.config.mel_statistics_parameter_path)
data_mean, data_std, init_transition_prob = (
statistics["mean"],
statistics["std"],
statistics["init_transition_prob"],
)
print(f" | > Data parameters loaded with value: {data_mean, data_std, init_transition_prob}")
trainer.config.flat_start_params["transition_p"] = (
init_transition_prob.item() if torch.is_tensor(init_transition_prob) else init_transition_prob
)
OverflowUtils.update_flat_start_transition(trainer.model, init_transition_prob)
trainer.model.update_mean_std(statistics)
@torch.inference_mode()
def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use, unused-argument
alignments, transition_vectors = outputs["alignments"], outputs["transition_vectors"]
means = torch.stack(outputs["means"], dim=1)
figures = {
"alignment": plot_alignment(alignments[0].exp(), title="Forward alignment", fig_size=(20, 20)),
"log_alignment": plot_alignment(
alignments[0].exp(), title="Forward log alignment", plot_log=True, fig_size=(20, 20)
),
"transition_vectors": plot_alignment(transition_vectors[0], title="Transition vectors", fig_size=(20, 20)),
"mel_from_most_probable_state": plot_spectrogram(
get_spec_from_most_probable_state(alignments[0], means[0], self.decoder), fig_size=(12, 3)
),
"mel_target": plot_spectrogram(batch["mel_input"][0], fig_size=(12, 3)),
}
# sample one item from the batch -1 will give the smalles item
print(" | > Synthesising audio from the model...")
inference_output = self.inference(
batch["text_input"][-1].unsqueeze(0), aux_input={"x_lengths": batch["text_lengths"][-1].unsqueeze(0)}
)
figures["synthesised"] = plot_spectrogram(inference_output["model_outputs"][0], fig_size=(12, 3))
states = [p[1] for p in inference_output["input_parameters"][0]]
transition_probability_synthesising = [p[2].cpu().numpy() for p in inference_output["output_parameters"][0]]
for i in range((len(transition_probability_synthesising) // 200) + 1):
start = i * 200
end = (i + 1) * 200
figures[f"synthesised_transition_probabilities/{i}"] = plot_transition_probabilities_to_numpy(
states[start:end], transition_probability_synthesising[start:end]
)
audio = ap.inv_melspectrogram(inference_output["model_outputs"][0].T.cpu().numpy())
return figures, {"audios": audio}
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
): # pylint: disable=unused-argument
"""Log training progress."""
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, self.ap.sample_rate)
def eval_log(
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int
): # pylint: disable=unused-argument
"""Compute and log evaluation metrics."""
# Plot model parameters histograms
if isinstance(logger, TensorboardLogger):
# I don't know if any other loggers supports this
for tag, value in self.named_parameters():
tag = tag.replace(".", "/")
logger.writer.add_histogram(tag, value.data.cpu().numpy(), steps)
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
def test_log(
self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument
) -> None:
logger.test_audios(steps, outputs[1], self.ap.sample_rate)
logger.test_figures(steps, outputs[0])
class NLLLoss(nn.Module):
"""Negative log likelihood loss."""
def forward(self, log_prob: torch.Tensor) -> dict: # pylint: disable=no-self-use
"""Compute the loss.
Args:
logits (Tensor): [B, T, D]
Returns:
Tensor: [1]
"""
return_dict = {}
return_dict["loss"] = -log_prob.mean()
return return_dict
|