Spaces:
Runtime error
Runtime error
File size: 46,662 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 |
# Adapted from: https://github.com/LowinLi/transformers-stream-generator
import copy
import inspect
import random
import warnings
from typing import Callable, List, Optional, Union
import numpy as np
import torch
import torch.distributed as dist
from torch import nn
from transformers import (
BeamSearchScorer,
ConstrainedBeamSearchScorer,
DisjunctiveConstraint,
GenerationConfig,
GenerationMixin,
LogitsProcessorList,
PhrasalConstraint,
PreTrainedModel,
StoppingCriteriaList,
)
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
def setup_seed(seed):
if seed == -1:
return
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class StreamGenerationConfig(GenerationConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.do_stream = kwargs.pop("do_stream", False)
class NewGenerationMixin(GenerationMixin):
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[StreamGenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = False,
seed=0,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs:
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchDecoderOnlyOutput`],
- [`~generation.SampleDecoderOnlyOutput`],
- [`~generation.BeamSearchDecoderOnlyOutput`],
- [`~generation.BeamSampleDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchEncoderDecoderOutput`],
- [`~generation.SampleEncoderDecoderOutput`],
- [`~generation.BeamSearchEncoderDecoderOutput`],
- [`~generation.BeamSampleEncoderDecoderOutput`]
"""
# setup_seed(seed)
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation -- update the generation config
# model attribute accordingly, if it was created from the model config
if self.generation_config._from_model_config:
new_generation_config = StreamGenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use a generation configuration file (see"
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
# self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor,
generation_config.pad_token_id,
generation_config.eos_token_id,
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
if (
generation_config.pad_token_id is not None
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created
# and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids = self._prepare_decoder_input_ids_for_generation(
batch_size,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
model_kwargs=model_kwargs,
device=inputs_tensor.device,
)
else:
# if decoder-only then inputs_tensor has to be `input_ids`
input_ids = inputs_tensor
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
"Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to"
f" {generation_config.max_length} (`generation_config.max_length`). Controlling `max_length` via the"
" config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif has_default_max_length and generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
elif not has_default_max_length and generation_config.max_new_tokens is not None:
raise ValueError(
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
" limit to the generated output length. Remove one of those arguments. Please refer to the"
" documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 7. determine generation mode
is_constraint_gen_mode = (
generation_config.constraints is not None or generation_config.force_words_ids is not None
)
is_contrastive_search_gen_mode = (
generation_config.top_k is not None
and generation_config.top_k > 1
and generation_config.do_sample is False
and generation_config.penalty_alpha is not None
and generation_config.penalty_alpha > 0
)
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and generation_config.do_stream is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_sample_gen_stream_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_stream is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_sample_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_group_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups > 1)
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
if generation_config.num_beam_groups > generation_config.num_beams:
raise ValueError("`num_beam_groups` has to be smaller or equal to `num_beams`")
if is_group_beam_gen_mode and generation_config.do_sample is True:
raise ValueError(
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
)
if self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 8. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
# 9. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
# 10. go into different generation modes
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" greedy search."
)
# 11. run greedy search
return self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_contrastive_search_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" contrastive search."
)
return self.contrastive_search(
input_ids,
top_k=generation_config.top_k,
penalty_alpha=generation_config.penalty_alpha,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_sample_gen_stream_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample_stream(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
# 12. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size * generation_config.num_return_sequences,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
)
# 13. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams * generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 14. run beam sample
return self.beam_sample(
input_ids,
beam_scorer,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_group_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
if generation_config.num_beams % generation_config.num_beam_groups != 0:
raise ValueError("`num_beams` should be divisible by `num_beam_groups` for group beam search.")
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
has_default_typical_p = kwargs.get("typical_p") is None and generation_config.typical_p == 1.0
if not has_default_typical_p:
raise ValueError("Decoder argument `typical_p` is not supported with beam groups.")
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
max_length=stopping_criteria.max_length,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
num_beam_groups=generation_config.num_beam_groups,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.group_beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_constraint_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
if generation_config.num_beams <= 1:
raise ValueError("`num_beams` needs to be greater than 1 for constrained generation.")
if generation_config.do_sample:
raise ValueError("`do_sample` needs to be false for constrained generation.")
if generation_config.num_beam_groups is not None and generation_config.num_beam_groups > 1:
raise ValueError("`num_beam_groups` not supported yet for constrained generation.")
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0
):
typeerror()
for word_ids in generation_config.force_words_ids:
if isinstance(word_ids[0], list):
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(not isinstance(token_ids, list) for token_ids in word_ids):
typeerror()
if any(
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
for token_ids in word_ids
):
typeerror()
constraint = DisjunctiveConstraint(word_ids)
else:
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
typeerror()
constraint = PhrasalConstraint(word_ids)
final_constraints.append(constraint)
# 11. prepare beam search scorer
constrained_beam_scorer = ConstrainedBeamSearchScorer(
constraints=final_constraints,
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.constrained_beam_search(
input_ids,
constrained_beam_scorer=constrained_beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
@torch.no_grad()
def sample_stream(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = False,
**model_kwargs,
) -> Union[SampleOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
<Tip warning={true}>
In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
For an overview of generation strategies and code examples, check the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`, *optional*):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
logits_warper (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
max_length (`int`, *optional*, defaults to 20):
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
tokens. The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`int`, *optional*):
The id of the *end-of-sequence* token.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> model.generation_config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList(
... [
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ]
... )
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> outputs = model.sample(
... input_ids,
... logits_processor=logits_processor,
... logits_warper=logits_warper,
... stopping_criteria=stopping_criteria,
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today is a beautiful day, and a wonderful day.\n\nI was lucky enough to meet the']
```"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# keep track of which sequences are already finished
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
this_peer_finished = False # used by synced_gpus only
# auto-regressive generation
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
yield next_tokens, self.final_norm(outputs.hidden_states[-1][:, -1])
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
def init_stream_support():
"""Overload PreTrainedModel for streaming."""
PreTrainedModel.generate_stream = NewGenerationMixin.generate
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
if __name__ == "__main__":
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
PreTrainedModel.generate = NewGenerationMixin.generate
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m", torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
model = model.to("cuda:0")
model = model.eval()
prompt_text = "hello? \n"
input_ids = tokenizer(prompt_text, return_tensors="pt", add_special_tokens=False).input_ids
input_ids = input_ids.to("cuda:0")
with torch.no_grad():
result = model.generate(
input_ids,
max_new_tokens=200,
do_sample=True,
top_k=30,
top_p=0.85,
temperature=0.35,
repetition_penalty=1.2,
early_stopping=True,
seed=0,
)
print(tokenizer.decode(result, skip_special_tokens=True))
generator = model.generate(
input_ids,
max_new_tokens=200,
do_sample=True,
top_k=30,
top_p=0.85,
temperature=0.35,
repetition_penalty=1.2,
early_stopping=True,
seed=0,
do_stream=True,
)
stream_result = ""
for x in generator:
chunk = tokenizer.decode(x, skip_special_tokens=True)
stream_result += chunk
print(stream_result)
|