Spaces:
Runtime error
Runtime error
File size: 6,853 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import datetime
import glob
import os
import random
import re
import numpy as np
from scipy import signal
from TTS.encoder.models.lstm import LSTMSpeakerEncoder
from TTS.encoder.models.resnet import ResNetSpeakerEncoder
from TTS.utils.io import save_fsspec
class AugmentWAV(object):
def __init__(self, ap, augmentation_config):
self.ap = ap
self.use_additive_noise = False
if "additive" in augmentation_config.keys():
self.additive_noise_config = augmentation_config["additive"]
additive_path = self.additive_noise_config["sounds_path"]
if additive_path:
self.use_additive_noise = True
# get noise types
self.additive_noise_types = []
for key in self.additive_noise_config.keys():
if isinstance(self.additive_noise_config[key], dict):
self.additive_noise_types.append(key)
additive_files = glob.glob(os.path.join(additive_path, "**/*.wav"), recursive=True)
self.noise_list = {}
for wav_file in additive_files:
noise_dir = wav_file.replace(additive_path, "").split(os.sep)[0]
# ignore not listed directories
if noise_dir not in self.additive_noise_types:
continue
if not noise_dir in self.noise_list:
self.noise_list[noise_dir] = []
self.noise_list[noise_dir].append(wav_file)
print(
f" | > Using Additive Noise Augmentation: with {len(additive_files)} audios instances from {self.additive_noise_types}"
)
self.use_rir = False
if "rir" in augmentation_config.keys():
self.rir_config = augmentation_config["rir"]
if self.rir_config["rir_path"]:
self.rir_files = glob.glob(os.path.join(self.rir_config["rir_path"], "**/*.wav"), recursive=True)
self.use_rir = True
print(f" | > Using RIR Noise Augmentation: with {len(self.rir_files)} audios instances")
self.create_augmentation_global_list()
def create_augmentation_global_list(self):
if self.use_additive_noise:
self.global_noise_list = self.additive_noise_types
else:
self.global_noise_list = []
if self.use_rir:
self.global_noise_list.append("RIR_AUG")
def additive_noise(self, noise_type, audio):
clean_db = 10 * np.log10(np.mean(audio**2) + 1e-4)
noise_list = random.sample(
self.noise_list[noise_type],
random.randint(
self.additive_noise_config[noise_type]["min_num_noises"],
self.additive_noise_config[noise_type]["max_num_noises"],
),
)
audio_len = audio.shape[0]
noises_wav = None
for noise in noise_list:
noiseaudio = self.ap.load_wav(noise, sr=self.ap.sample_rate)[:audio_len]
if noiseaudio.shape[0] < audio_len:
continue
noise_snr = random.uniform(
self.additive_noise_config[noise_type]["min_snr_in_db"],
self.additive_noise_config[noise_type]["max_num_noises"],
)
noise_db = 10 * np.log10(np.mean(noiseaudio**2) + 1e-4)
noise_wav = np.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio
if noises_wav is None:
noises_wav = noise_wav
else:
noises_wav += noise_wav
# if all possible files is less than audio, choose other files
if noises_wav is None:
return self.additive_noise(noise_type, audio)
return audio + noises_wav
def reverberate(self, audio):
audio_len = audio.shape[0]
rir_file = random.choice(self.rir_files)
rir = self.ap.load_wav(rir_file, sr=self.ap.sample_rate)
rir = rir / np.sqrt(np.sum(rir**2))
return signal.convolve(audio, rir, mode=self.rir_config["conv_mode"])[:audio_len]
def apply_one(self, audio):
noise_type = random.choice(self.global_noise_list)
if noise_type == "RIR_AUG":
return self.reverberate(audio)
return self.additive_noise(noise_type, audio)
def to_camel(text):
text = text.capitalize()
return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
def setup_encoder_model(config: "Coqpit"):
if config.model_params["model_name"].lower() == "lstm":
model = LSTMSpeakerEncoder(
config.model_params["input_dim"],
config.model_params["proj_dim"],
config.model_params["lstm_dim"],
config.model_params["num_lstm_layers"],
use_torch_spec=config.model_params.get("use_torch_spec", False),
audio_config=config.audio,
)
elif config.model_params["model_name"].lower() == "resnet":
model = ResNetSpeakerEncoder(
input_dim=config.model_params["input_dim"],
proj_dim=config.model_params["proj_dim"],
log_input=config.model_params.get("log_input", False),
use_torch_spec=config.model_params.get("use_torch_spec", False),
audio_config=config.audio,
)
return model
def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_step, epoch):
checkpoint_path = "checkpoint_{}.pth".format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
new_state_dict = model.state_dict()
state = {
"model": new_state_dict,
"optimizer": optimizer.state_dict() if optimizer is not None else None,
"criterion": criterion.state_dict(),
"step": current_step,
"epoch": epoch,
"loss": model_loss,
"date": datetime.date.today().strftime("%B %d, %Y"),
}
save_fsspec(state, checkpoint_path)
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step, epoch):
if model_loss < best_loss:
new_state_dict = model.state_dict()
state = {
"model": new_state_dict,
"optimizer": optimizer.state_dict(),
"criterion": criterion.state_dict(),
"step": current_step,
"epoch": epoch,
"loss": model_loss,
"date": datetime.date.today().strftime("%B %d, %Y"),
}
best_loss = model_loss
bestmodel_path = "best_model.pth"
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
save_fsspec(state, bestmodel_path)
return best_loss
|