File size: 7,750 Bytes
0f03dd5
 
 
 
98d17bf
0f03dd5
cb1cf5c
 
0f03dd5
 
cb1cf5c
 
0f03dd5
 
 
 
98d17bf
e010197
 
 
98d17bf
e010197
98d17bf
0f03dd5
cb1cf5c
98d17bf
cb1cf5c
 
 
0f03dd5
e010197
cb1cf5c
 
37e8cfe
0f03dd5
cb1cf5c
98d17bf
cb1cf5c
 
e010197
98d17bf
37e8cfe
e010197
37e8cfe
 
 
 
 
 
 
e010197
 
37e8cfe
 
e010197
37e8cfe
 
 
 
0f03dd5
e010197
 
 
 
0f03dd5
37e8cfe
98d17bf
 
37e8cfe
cb1cf5c
98d17bf
cb1cf5c
 
 
98d17bf
 
 
 
0f03dd5
98d17bf
37e8cfe
98d17bf
 
 
 
 
 
 
cb1cf5c
98d17bf
cb1cf5c
 
 
 
 
 
 
 
 
98d17bf
37e8cfe
98d17bf
cb1cf5c
98d17bf
0f03dd5
98d17bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e8cfe
98d17bf
 
 
 
 
 
 
 
 
 
 
cb1cf5c
98d17bf
37e8cfe
0f03dd5
98d17bf
0f03dd5
98d17bf
 
37e8cfe
cb1cf5c
e010197
98d17bf
 
cb1cf5c
e010197
98d17bf
37e8cfe
 
98d17bf
0f03dd5
98d17bf
cb1cf5c
98d17bf
 
 
 
 
 
 
 
cb1cf5c
 
98d17bf
 
 
 
 
 
 
cb1cf5c
98d17bf
 
 
cb1cf5c
98d17bf
 
cb1cf5c
98d17bf
 
 
cb1cf5c
 
98d17bf
 
cb1cf5c
98d17bf
 
cb1cf5c
 
 
 
0f03dd5
cb1cf5c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import json
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import torch
from sklearn.metrics import f1_score
import re
from collections import Counter
import string
from huggingface_hub import login
import gradio as gr
import pandas as pd
from datetime import datetime

def normalize_answer(s):
    """Identical to extractor's normalization"""
    def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
    def white_space_fix(text): return ' '.join(text.split())
    def remove_punc(text): 
        return ''.join(ch for ch in text if ch not in set(string.punctuation))
    def lower(text): return text.lower()
    return white_space_fix(remove_articles(remove_punc(lower(s))))

def f1_score_qa(prediction, ground_truth):
    """Identical to original"""
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0: return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    return (2 * precision * recall) / (precision + recall)

def exact_match_score(prediction, ground_truth):
    """Identical to original"""
    return normalize_answer(prediction) == normalize_answer(ground_truth)

def get_qa_confidence(model, tokenizer, question, context):
    """Identical to extractor's confidence calculation"""
    inputs = tokenizer(
        question, context,
        return_tensors="pt",
        truncation=True,
        max_length=512,
        stride=128,
        padding=True
    )
    if torch.cuda.is_available():
        inputs = {k:v.cuda() for k,v in inputs.items()}
    
    with torch.no_grad():
        outputs = model(**inputs)
    
    start_probs = torch.softmax(outputs.start_logits, dim=1)
    end_probs = torch.softmax(outputs.end_logits, dim=1)
    answer_start = torch.argmax(outputs.start_logits)
    answer_end = torch.argmax(outputs.end_logits) + 1
    
    confidence = np.sqrt(
        start_probs[0, answer_start].item() * 
        end_probs[0, answer_end-1].item()
    )
    
    answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
    answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip()
    return answer, float(confidence)

def run_evaluation(num_samples, progress=gr.Progress()):
    """Modified to use extractor's confidence calculation"""
    # Authentication
    hf_token = os.getenv("EVAL_TOKEN")
    if hf_token:
        try:
            login(token=hf_token)
        except Exception as e:
            print(f"Auth error: {e}")
    
    # Load model (raw instead of pipeline)
    model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
        model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
        if torch.cuda.is_available():
            model = model.cuda()
    except Exception as e:
        return f"❌ Model load failed: {e}", pd.DataFrame(), None
    
    # Load dataset
    progress(0.1, desc="Loading CUAD dataset...")
    try:
        dataset = load_dataset(
            "theatticusproject/cuad-qa",
            trust_remote_code=True,
            token=hf_token
        )
        test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
    except Exception as e:
        return f"❌ Dataset load failed: {e}", pd.DataFrame(), None
    
    predictions = []
    for i, example in enumerate(test_data):
        progress((0.2 + 0.7 * i / num_samples), desc=f"Processing {i+1}/{num_samples}")
        
        try:
            context = example["context"]
            question = example["question"]
            gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
            
            # Use extractor-style confidence
            pred_answer, confidence = get_qa_confidence(model, tokenizer, question, context)
            
            predictions.append({
                "Sample_ID": i+1,
                "Question": question[:100] + "..." if len(question) > 100 else question,
                "Predicted_Answer": pred_answer,
                "Ground_Truth": gt_answer,
                "Exact_Match": exact_match_score(pred_answer, gt_answer),
                "F1_Score": round(f1_score_qa(pred_answer, gt_answer), 3),
                "Confidence": round(confidence, 3)  # Now matches extractor
            })
        except Exception as e:
            print(f"Error sample {i}: {e}")
            continue
    
    # Generate report (identical to original)
    if not predictions:
        return "❌ No valid predictions", pd.DataFrame(), None
    
    df = pd.DataFrame(predictions)
    avg_em = df["Exact_Match"].mean() * 100
    avg_f1 = df["F1_Score"].mean() * 100
    
    results_summary = f"""
    # πŸ“Š Evaluation Results (n={len(df)})
    ## 🎯 Metrics
    - Exact Match: {avg_em:.2f}%
    - F1 Score: {avg_f1:.2f}%
    - Avg Confidence: {df['Confidence'].mean():.2%}
    ## πŸ” Confidence Analysis
    - High-Confidence (>80%) Accuracy: {
        df[df['Confidence'] > 0.8]['Exact_Match'].mean():.1%}
    """
    
    # Save results (identical to original)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    results_file = f"cuad_eval_{timestamp}.json"
    with open(results_file, "w") as f:
        json.dump({
            "model": model_name,
            "metrics": {
                "exact_match": float(avg_em),
                "f1_score": float(avg_f1),
                "avg_confidence": float(df['Confidence'].mean())
            },
            "samples": predictions
        }, f, indent=2)
    
    return results_summary, df, results_file

# YOUR ORIGINAL GRADIO INTERFACE (COMPLETELY UNCHANGED)
def create_gradio_interface():
    with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
        <div style="text-align: center; padding: 20px;">
            <h1>πŸ›οΈ CUAD Model Evaluation Dashboard</h1>
            <p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
            <p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v2</p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.HTML("<h3>βš™οΈ Evaluation Settings</h3>")
                num_samples = gr.Slider(10, 500, value=100, step=10, label="Number of samples")
                evaluate_btn = gr.Button("πŸš€ Start Evaluation", variant="primary")
                
            with gr.Column(scale=2):
                results_summary = gr.Markdown("Click 'πŸš€ Start Evaluation' to begin...")
        
        gr.HTML("<hr>")
        detailed_results = gr.Dataframe(interactive=False, wrap=True)
        download_file = gr.File(visible=False)
        
        def handle_eval(num_samples):
            summary, df, file = run_evaluation(num_samples)
            return (
                summary,
                df[["Sample_ID", "Question", "Predicted_Answer", "Confidence", "Exact_Match"]],
                gr.File(visible=True, value=file) if file else gr.File(visible=False)
            )
        
        evaluate_btn.click(
            fn=handle_eval,
            inputs=num_samples,
            outputs=[results_summary, detailed_results, download_file],
            show_progress=True
        )
    
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )