File size: 7,088 Bytes
120a604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import os

os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    MODEL_PATH_URL = "https://drive.google.com/uc?id=1KyMpRjewZdyYfxHPYcd-ZbanIXtin0Sn"
    gdown.download(MODEL_PATH_URL, "saved_models/isnet.pth", use_cookies=False)
    
class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image


transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape


def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

    
def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

  
    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
   
    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
    
# Set Parameters
hypar = {} # paramters for inferencing


hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision

##  choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size

## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation

hypar["model"] = ISNetDIS()

 # Build Model
net = build_model(hypar, device)


def infer_mask(image: Image):
  image_path = image
  
  image_tensor, orig_size = load_image(image_path, hypar) 
  mask = predict(net, image_tensor, orig_size, hypar, device)
  
  return Image.fromarray(mask).convert("L")

def blur(image_set: list, blur_amount: int):
    blurred_image = image_set[0].filter(ImageFilter.GaussianBlur(blur_amount))

    return Image.composite(image_set[0], blurred_image, image_set[1])


with gr.Blocks() as interface:
    default_im = Image.open("newman.jpg").convert("RGB")
    default_mask = Image.open("newman_mask.jpg").convert("RGB")
    examples_list = [os.path.join(os.path.dirname(__file__), "newman.jpg"),
                os.path.join(os.path.dirname(__file__), "abbey.jpg"),
                os.path.join(os.path.dirname(__file__), "julia.jpg")
                ]

    current_images = gr.State([default_im, default_mask])
    mask_toggle = gr.State(False)

    gr.Markdown(
        """
        ### Intelligent Photo Blur Using Dichotomous Image Segmentation

        This app leverages the machine learning engine built by Xuebin Qin ([https://github.com/xuebinqin/DIS](https://github.com/xuebinqin/DIS)) to mask the prominent subject within a photograph.
        The mask is used to keep the subject in clear focus while an adjustable slider is available to interactively blur the background.
        To use, upload a photo and press the run button. You can adjust the level of blur through the slider and view the mask using the "Show Generated Mask" button.
        """
    )
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(value=default_im, type='filepath')
            run_button = gr.Button()
            gr.Examples(inputs=input_image, examples=examples_list)
        with gr.Column():
            output_image = gr.Image()
            blur_slider = gr.Slider(0, 16, 5, step=1, label="Blur Amount")
            mask_button = gr.Button(value="Show Generated Mask")
            mask_image = gr.Image(value=default_mask, visible=False)

        def run(image: Image, current_images: gr.State):
            im_rgb = Image.open(image).convert("RGB")
            mask = infer_mask(image)

            return (
                blur([im_rgb, mask], 5),
                mask,
                [im_rgb, mask]
            )
        
        def reset_slider():
            return gr.update(value=5)

        def show_mask(mask_toggle: gr.State):
            if mask_toggle == True:
                return gr.update(visible=False)
            else:
                return gr.update(visible=True)

        def toggle_mask(mask_toggle: gr.State):
            if mask_toggle == True:
                return False
            else:
                return True

        run_button.click(run, [input_image, current_images], [output_image, mask_image, current_images])
        run_button.click(reset_slider, outputs=blur_slider)
        blur_slider.change(blur, [current_images, blur_slider], output_image, show_progress=False)
        mask_button.click(show_mask, inputs=mask_toggle, outputs=mask_image)
        mask_button.click(toggle_mask, inputs=mask_toggle, outputs=mask_toggle)

interface.launch()