File size: 13,403 Bytes
b8a3ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import os
import pathlib
import gradio as gr
import pandas as pd
import yaml
from autorag.evaluator import Evaluator
from src.runner import GradioStreamRunner
root_dir = os.path.dirname(os.path.realpath(__file__))
# Paths to example files
config_dir = os.path.join(root_dir, "config")
# Non-GPU Examples
non_gpu = os.path.join(config_dir, "non_gpu")
simple_openai = os.path.join(non_gpu, "simple_openai.yaml")
simple_openai_korean = os.path.join(non_gpu, "simple_openai_korean.yaml")
compact_openai = os.path.join(non_gpu, "compact_openai.yaml")
compact_openai_korean = os.path.join(non_gpu, "compact_openai_korean.yaml")
half_openai = os.path.join(non_gpu, "half_openai.yaml")
half_openai_korean = os.path.join(non_gpu, "half_openai_korean.yaml")
full_openai = os.path.join(non_gpu, "full_no_rerank_openai.yaml")
non_gpu_examples_list = [
simple_openai, simple_openai_korean, compact_openai, compact_openai_korean, half_openai, half_openai_korean,
full_openai
]
non_gpu_examples = list(map(lambda x: [x], non_gpu_examples_list))
# GPU Examples
gpu = os.path.join(config_dir, "gpu")
compact_openai_gpu = os.path.join(gpu, "compact_openai.yaml")
compact_openai_korean_gpu = os.path.join(gpu, "compact_openai_korean.yaml")
half_openai_gpu = os.path.join(gpu, "half_openai.yaml")
half_openai_korean_gpu = os.path.join(gpu, "half_openai_korean.yaml")
full_openai_gpu = os.path.join(gpu, "full_no_rerank_openai.yaml")
gpu_examples_list = [
compact_openai_gpu, compact_openai_korean_gpu, half_openai_gpu, half_openai_korean_gpu, full_openai_gpu
]
gpu_examples = list(map(lambda x: [x], gpu_examples_list))
# GPU + API
gpu_api = os.path.join(config_dir, "gpu_api")
compact_openai_gpu_api = os.path.join(gpu_api, "compact_openai.yaml")
compact_openai_korean_gpu_api = os.path.join(gpu_api, "compact_openai_korean.yaml")
half_openai_gpu_api = os.path.join(gpu_api, "half_openai.yaml")
half_openai_korean_gpu_api = os.path.join(gpu_api, "half_openai_korean.yaml")
full_openai_gpu_api = os.path.join(gpu_api, "full_no_rerank_openai.yaml")
gpu_api_examples_list = [
compact_openai_gpu_api, compact_openai_korean_gpu_api, half_openai_gpu_api, half_openai_korean_gpu_api,
full_openai_gpu_api
]
gpu_api_examples = list(map(lambda x: [x], gpu_api_examples_list))
example_qa_parquet = os.path.join(root_dir, "sample_data", "qa_data_sample.parquet")
example_corpus_parquet = os.path.join(root_dir, "sample_data", "corpus_data_sample.parquet")
def display_yaml(file):
if file is None:
return "No file uploaded"
with open(file.name, "r") as f:
content = yaml.safe_load(f)
return yaml.dump(content, default_flow_style=False)
def display_parquet(file):
if file is None:
return pd.DataFrame()
df = pd.read_parquet(file.name)
return df
def check_files(yaml_file, qa_file, corpus_file):
if yaml_file is not None and qa_file is not None and corpus_file is not None:
return gr.update(visible=True)
return gr.update(visible=False)
def run_trial(file, yaml_file, qa_file, corpus_file):
project_dir = os.path.join(pathlib.PurePath(file.name).parent, "project")
evaluator = Evaluator(qa_file, corpus_file, project_dir=project_dir)
evaluator.start_trial(yaml_file, skip_validation=True)
return ("❗Trial Completed❗ "
"Go to Chat Tab to start the conversation")
def set_environment_variable(api_name, api_key):
if api_name and api_key:
try:
os.environ[api_name] = api_key
return "✅ Setting Complete ✅"
except Exception as e:
return f"Error setting environment variable: {e}"
return "API Name or Key is missing"
def stream_default(file, history):
# Default YAML Runner
yaml_path = os.path.join(config_dir, "extracted_sample.yaml")
project_dir = os.path.join(
pathlib.PurePath(file.name).parent, "project"
)
default_gradio_runner = GradioStreamRunner.from_yaml(yaml_path, project_dir)
history.append({"role": "assistant", "content": ""})
# Stream responses for the chatbox
for default_output in default_gradio_runner.stream_run(history[-2]["content"]):
stream_delta = default_output[0]
history[-1]["content"] = stream_delta
yield history
def stream_optimized(file, history):
# Custom YAML Runner
trial_dir = os.path.join(pathlib.PurePath(file.name).parent, "project", "0")
custom_gradio_runner = GradioStreamRunner.from_trial_folder(trial_dir)
history.append({"role": "assistant", "content": ""})
for output in custom_gradio_runner.stream_run(history[-2]["content"]):
stream_delta = output[0]
history[-1]["content"] = stream_delta
yield history
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
with gr.Blocks(theme="earneleh/paris") as demo:
gr.Markdown("# AutoRAG Trial & Debugging Interface")
with gr.Tabs() as tabs:
with gr.Tab("Environment Variables"):
gr.Markdown("## Environment Variables")
with gr.Row(): # Arrange horizontally
with gr.Column(scale=3):
api_name = gr.Textbox(
label="Environment Variable Name",
type="text",
placeholder="Enter your Environment Variable Name",
)
gr.Examples(examples=[["OPENAI_API_KEY"]], inputs=api_name)
with gr.Column(scale=7):
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API Key",
)
set_env_button = gr.Button("Set Environment Variable")
env_output = gr.Textbox(
label="Status", interactive=False
)
api_key.submit(
set_environment_variable, inputs=[api_name, api_key], outputs=env_output
)
set_env_button.click(
set_environment_variable, inputs=[api_name, api_key], outputs=env_output
)
with gr.Tab("File Upload"):
with gr.Row() as file_upload_row:
with gr.Column(scale=3):
yaml_file = gr.File(
label="Upload YAML File",
file_count="single",
)
make_yaml_button = gr.Button("Make Your Own YAML File",
link="https://tally.so/r/mBQY5N")
with gr.Column(scale=7):
yaml_content = gr.Textbox(label="YAML File Content")
gr.Markdown("Here is the Sample YAML File. Just click the file ❗")
gr.Markdown("### Non-GPU Examples")
gr.Examples(examples=non_gpu_examples, inputs=yaml_file)
with gr.Row():
# Section for GPU examples
with gr.Column():
gr.Markdown("### GPU Examples")
gr.Markdown(
"**⚠️ Warning**: Here are the YAML files containing the modules that use the **local model**.")
gr.Markdown(
"Note that if you Run_Trial in a non-GPU environment, **it can take a very long time**.")
gr.Examples(examples=gpu_examples, inputs=yaml_file)
make_gpu = gr.Button("Use AutoRAG GPU Feature",
link="https://tally.so/r/3j7rP6")
# Section for GPU + API examples
with gr.Column():
gr.Markdown("### GPU + API Examples")
gr.Markdown(
"**⚠️ Warning**: Here are the YAML files containing the modules that use the **local model** and **API Based Model**.")
gr.Markdown("You need to set **JINA_API_KEY**, **COHERE_API_KEY**, **MXBAI_API_KEY** and **VOYAGE_API_KEY** as environment variables to use this feature. ")
gr.Examples(examples=gpu_api_examples, inputs=yaml_file)
gpu_api_button = gr.Button("Use AutoRAG API KEY Feature",
link="https://tally.so/r/waD1Ab")
with gr.Row() as qa_upload_row:
with gr.Column(scale=3):
qa_file = gr.File(
label="Upload qa.parquet File",
file_count="single",
)
# Add button for QA
make_qa_button = gr.Button("Make Your Own QA Data",
link="https://huggingface.co/spaces/AutoRAG/AutoRAG-data-creation")
with gr.Column(scale=7):
qa_content = gr.Dataframe(label="QA Parquet File Content")
gr.Markdown("Here is the Sample QA File. Just click the file ❗")
gr.Examples(examples=[[example_qa_parquet]], inputs=qa_file)
with gr.Row() as corpus_upload_row:
with gr.Column(scale=3):
corpus_file = gr.File(
label="Upload corpus.parquet File",
file_count="single",
)
make_corpus_button = gr.Button("Make Your Own Corpus Data",
link="https://huggingface.co/spaces/AutoRAG/AutoRAG-data-creation")
with gr.Column(scale=7):
corpus_content = gr.Dataframe(label="Corpus Parquet File Content")
gr.Markdown(
"Here is the Sample Corpus File. Just click the file ❗"
)
gr.Examples(examples=[[example_corpus_parquet]], inputs=corpus_file)
run_trial_button = gr.Button("Run Trial", visible=False)
trial_output = gr.Textbox(label="Trial Output", visible=False)
yaml_file.change(display_yaml, inputs=yaml_file, outputs=yaml_content)
qa_file.change(display_parquet, inputs=qa_file, outputs=qa_content)
corpus_file.change(
display_parquet, inputs=corpus_file, outputs=corpus_content
)
yaml_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
qa_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
corpus_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
run_trial_button.click(
lambda: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
),
outputs=[
file_upload_row,
qa_upload_row,
corpus_upload_row,
trial_output,
],
)
run_trial_button.click(
run_trial,
inputs=[yaml_file, yaml_file, qa_file, corpus_file],
outputs=trial_output,
)
# New Chat Tab
with gr.Tab("Chat") as chat_tab:
gr.Markdown("### Compare Chat Models")
question_input = gr.Textbox(
label="Your Question", placeholder="Type your question here..."
)
pseudo_input = gr.Textbox(label="havertz", visible=False)
with gr.Row():
# Left Chatbox (Default YAML)
with gr.Column():
gr.Markdown("#### Naive RAG Chat")
default_chatbox = gr.Chatbot(label="Naive RAG Conversation",type="messages")
# Right Chatbox (Custom YAML)
with gr.Column():
gr.Markdown("#### Optimized RAG Chat")
custom_chatbox = gr.Chatbot(label="Optimized RAG Conversation",type="messages")
question_input.submit(lambda x: x, inputs=[question_input], outputs=[pseudo_input]).then(
user, [question_input, default_chatbox], outputs=[question_input, default_chatbox], queue=False
).then(
stream_default,
inputs=[yaml_file, default_chatbox],
outputs=[default_chatbox],
)
pseudo_input.change(
user, [pseudo_input, custom_chatbox], outputs=[question_input, custom_chatbox], queue=False).then(
stream_optimized,
inputs=[yaml_file, custom_chatbox],
outputs=[custom_chatbox],
)
deploy_button = gr.Button("Deploy",
link="https://tally.so/r/3XM7y4")
if __name__ == "__main__":
# Run the interface
demo.launch(share=False, debug=True)
|