File size: 17,691 Bytes
b0829c1
02c682c
6510d4d
b0829c1
 
 
bee86f1
a79e4c0
b0829c1
 
 
 
 
 
 
 
 
 
 
 
a79e4c0
b0829c1
62fdfea
02c682c
0c79d4a
 
 
 
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a79e4c0
b0829c1
62fdfea
 
b0829c1
 
 
 
 
62fdfea
b0829c1
62fdfea
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a79e4c0
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cce61
a79e4c0
 
e66f9e1
 
 
 
 
 
 
 
 
b0829c1
 
 
700b481
3ca0851
62fdfea
 
 
 
27c77fd
26b17df
b0829c1
26b17df
b0829c1
 
 
 
 
 
 
 
3ca0851
b0829c1
ae88252
b0829c1
 
 
 
 
 
26b17df
 
 
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b17df
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b17df
b0829c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a79e4c0
 
 
26b17df
 
 
 
02c682c
 
 
 
 
 
 
 
 
 
 
 
 
 
26b17df
 
 
 
 
02c682c
 
 
 
 
 
26b17df
 
 
 
 
55f6f75
26b17df
 
 
02c682c
 
 
26b17df
 
 
55f6f75
26b17df
 
 
02c682c
 
 
26b17df
 
 
55f6f75
26b17df
 
 
02c682c
 
 
26b17df
b0829c1
bee86f1
 
 
0c79d4a
 
 
bee86f1
 
 
 
 
0c79d4a
bee86f1
0c79d4a
 
 
 
 
 
bee86f1
 
a79e4c0
 
b0829c1
a79e4c0
 
b0829c1
a79e4c0
bee86f1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import streamlit as st
import base64
import boto3

st.set_page_config(page_title='Auto-BG: The Game Concept Generator', layout='wide')

tab1, tab2, tab3, tab4 = st.tabs(['App', 'Blog', 'Feedback', 'About Us'])

def application():
    ###Imports
    import pandas as pd
    import numpy as np
    import re
    import urllib
    import pickle
    import spacy
    from spacy.tokens import DocBin
    from title_generator import Title_Generator
    import gzip
    import io
    from datetime import date
    from description_generator import input_manager, model_control
    from pathlib import Path
    import base64

    #S3 Bucket
    session = boto3.Session(aws_access_key_id=st.secrets.accesskey, aws_secret_access_key=st.secrets.secretaccesskey)


    #UI Session Variables
    if 'desc_iter' not in st.session_state:
        st.session_state.desc_iter = 0
    if 'title_iter' not in st.session_state:
        st.session_state.title_iter = 0
    if 'output_dict' not in st.session_state:
        st.session_state.output_dict = {}
    if 'inputs' not in st.session_state:
        st.session_state.inputs = []
    if 'cur_pair' not in st.session_state:
        st.session_state.cur_pair = ("","Run me!")
    if 'f_d' not in st.session_state:
        st.session_state.f_d = None
    if 'g_d' not in st.session_state:
        st.session_state.g_d = None
    if 'm_d' not in st.session_state:
        st.session_state.m_d = None
    if 'c_d' not in st.session_state:
        st.session_state.c_d = None
    if 'coop_d' not in st.session_state:
        st.session_state.coop_d = 0

    #helper functions
    #reader code extended from https://gist.github.com/thearn/5424244 for alternate load format
    def reader(path):
        f = gzip.GzipFile(filename=path)
        data = f.read()
        obj = pickle.loads(data)
        f.close()
        return obj
            
    def token_expand(path):
        nlp = spacy.blank("en")
        f = gzip.GzipFile(filename=path)
        data = f.read()
        obj = pickle.loads(data)
        f.close()
        doc_bin = DocBin().from_bytes(obj)
        docs = list(doc_bin.get_docs(nlp.vocab))
        return (docs[1:9],docs[9:192],docs[192:276],docs[276:3901])

    def revert_cats(gt, mec, cat, fam, coop):
        gt = ["game_type_" + x for x in gt]
        mec = ["mechanic_" + x for x in mec]
        cat = ["category_" + x for x in cat]
        fam = ["family_" + x for x in fam if x != "Game: [redacted]"]
        if coop == 1:
            co  = ["cooperative", "mechanic_Cooperative Game"]
        else:
            co  = []

        final_list = [gt,mec,cat,fam, co]
        return [item for sublist in final_list for item in sublist]
    
    def builder(ip):
        ks = iman.input_parser(iman.set_input(ip))
        mctrl.prompt_formatter(ks)
        descs = []
        for status in np.arange(0,3):
            desc = mctrl.call_api(status=status)
            clean_desc = mctrl.resp_cleanup(desc)
            inter_pair = Tgen.candidate_generator(clean_desc)
            out = Tgen.candidate_score(inter_pair,ex_check)
            descs.append(out)
            results.success("Prompt " +str(status+1)+ "/3 Generated!")
        st.session_state.output_dict = {0:descs[0],1:descs[1],2:descs[2]}

    def title_check(next=0):
        if next==1:
            if st.session_state.title_iter == (len(st.session_state.output_dict[st.session_state.desc_iter]['titles'])-1):
                st.session_state.title_iter = 0
            else:
                st.session_state.title_iter +=1
        elif next==-1:
            if st.session_state.title_iter == 0:
                st.session_state.title_iter = (len(st.session_state.output_dict[st.session_state.desc_iter]['titles'])-1)
            else:
                st.session_state.title_iter -=1
        else:
            st.session_state.title_iter = 0

        cur_title = st.session_state.output_dict[st.session_state.desc_iter]['titles'][st.session_state.title_iter][0]
        desc = re.sub(re.compile("__"),cur_title,st.session_state.output_dict[st.session_state.desc_iter]['text'])  

        return (cur_title, desc.lstrip())

    def show_title(val): 
        out = title_check(next=val)
        st.session_state.cur_pair = out

    def PT_button_clicked():
        show_title(-1)

    def NT_button_clicked():
        show_title(1)

    def PD_button_clicked():
        if st.session_state.desc_iter == 0:
            st.session_state.desc_iter = 2
            st.session_state.title_iter = 0
        else:
            st.session_state.desc_iter -= 1
            st.session_state.title_iter = 0
        show_title(0)

    def ND_button_clicked():
        if st.session_state.desc_iter == 2:
                st.session_state.desc_iter = 0
                st.session_state.title_iter = 0
        else:
            st.session_state.desc_iter += 1
            st.session_state.title_iter = 0
        show_title(0)

    def report():       
        inputs = '|'.join(str(x) for x in st.session_state.inputs) 
        data = {'rprtd':  date.today(),'inpts': inputs, 'title': st.session_state.output_dict[st.session_state.desc_iter]['titles'][st.session_state.title_iter][0], 'desc':st.session_state.output_dict[st.session_state.desc_iter]['text']}

        s3=session.client('s3')
        reportedjson = s3.get_object(Bucket='auto-bg', Key='reported.json')
        r_d = pd.read_json(reportedjson.get("Body"))
        r_df = pd.DataFrame(data, index=[len(r_d)+1])
        w_p = pd.concat([r_df, r_d])
        w_p = w_p.drop_duplicates().reset_index(drop=True)
        s3.put_object(Body=w_p.to_json() ,Bucket='auto-bg', Key='reported.json')

    ###Variables

    ###Data
    @st.cache_data
    def fetch_data():
        #path load solution from https://stackoverflow.com/questions/69768380/share-streamlit-cant-find-pkl-file
        slim_df = pd.read_parquet(Path(__file__).parent / "Persistent_Data/slim_df.parquet.gzip")
        search_tokens = token_expand(Path(__file__).parent / "Persistent_Data/token_search.gz")
        vector_df = pd.read_parquet(Path(__file__).parent / 'Persistent_Data/vector_df.parquet.gzip')
        category_keys = reader(Path(__file__).parent / "Persistent_Data/current_keys.gz")
        return slim_df, search_tokens, vector_df, category_keys
    
    slim_df, search_tokens, vector_df, category_keys = fetch_data()
    
    ex_check = ["[Ee]verquest","[Cc]ivilization [Ii][IiVv]","[Cc]ivilization(?=:)","[Cc]ivilization [Ii][Ii]",
            "[Cc]ivilization [Ii][Ii][Ii]","[Cc]ivilization V","[Aa]ge [Oo]f [Ee]mpires [Ii][Ii2]([Ii]|\b)", "[Rr]avenloft|[Cc]astle [Rr]avenloft",
            "[Ss]cythe(?=:|\b)","[Dd]ungeons [&Aa][ n][Dd ][ Ddr][Ddra][rg][oa][gn][os](ns|\b)",
            "[Aa]ge [Oo]f [Ee]mpires [Ii][Ii]: [Tt]he [Aa]ge [Oo]f [Kk]ings","[Aa]ge [Oo]f [Ee]mpires 2: [Tt]he [Aa]ge [Oo]f [Kk]ings",
            "[Aa]ge [Oo]f [Ee]mpires","Doctor Who"] 

    ###Models
    @st.cache_resource
    def setup_models():
        spacy.cli.download("en_core_web_md")
        return Title_Generator('./t5_model', slim_df), input_manager(vector_df, slim_df, search_tokens),  model_control(apikey=st.secrets.key,model_id=st.secrets.model)

    Tgen, iman, mctrl = setup_models()
    
    #UI

    #Application

    ###Intro
    st.title("""Auto-BG: The Game Concept Generator""")

    with st.expander("How to use", expanded=True):
        st.write(
            """
            Discover the concept for your next favorite game!
                        
            How do you use Auto-BG?
            Pick any set of tags from four selectors below: Family, Game, Mechanic, and Category.
            If you are looking to lose together - activate the cooperative toggle.
            
            See ? icons for detailed information on each type of tag.
            
            Select any pre-configured demo below to see how Auto-BG works on the tag set for a popular board game. 
            """
        )
    
    results = st.empty()

    ###Demo
    with st.expander('Demos'):

        st.write("""These buttons run Auto-BG on the tag set for real games you might be familiar with,
                 choose a button and the corresponding tags automatically fill the selectors below.
                 Press run and see how Auto-BG creates an alternate concept for these hit titles!
                 """)

        b1, b2, b3 =  st.columns(3)

    with b1:
        SoC = st.button('Catan', use_container_width=True)
        if SoC:
            st.session_state.f_d = [
                'Animals: Sheep',
                'Components: Hexagonal Tiles',
                'Components: Wooden pieces & boards'
                ]
            st.session_state.g_d = ['Family Game', 'Strategy Game']
            st.session_state.m_d = [
                'Hexagon Grid',
                'Network and Route Building',
                'Random Production',
                'Trading',
                'Variable Set-up'
                ]
            st.session_state.c_d = [
                'Economic',
                'Negotiation'
                ]
            st.session_state.coop_d = 0

    with b2:
        TtR = st.button('Ticket to Ride', use_container_width=True)
        if TtR:
            st.session_state.f_d = [
                'Components: Map (Continental / National scale)',
                'Continents: North America',
                'Country: USA'
                ]
            st.session_state.g_d = ['Family Game']
            st.session_state.m_d = [
                'Contracts',
                'End Game Bonuses',
                'Network and Route Building',
                'Push Your Luck',
                'Set Collection'
                ]
            st.session_state.c_d = [
                'Trains'
                ]
            st.session_state.coop_d = 0
        
    with b3:
        P = st.button('Pandemic', use_container_width=True)
        if P:
            st.session_state.f_d = [
                'Components: Map (Global Scale)',
                'Components: Multi-Use Cards',
                'Medical: Diseases',
                'Region: The World',
                'Theme: Science'
                ]
            st.session_state.g_d = ['Family Game', 'Strategy Game']
            st.session_state.m_d = [
                'Action Points',
                'Point to Point Movement',
                'Trading',
                'Variable Player Powers'
                ]
            st.session_state.c_d = [
                'Medical'
                ]
            st.session_state.coop_d = 1

    ###Form
    with st.expander("Auto-BG", expanded=True):

        col1, col2 = st.columns(2)
    
        with col1:
            Family_v = st.multiselect("Family", options=pd.Series(category_keys[4][8:]), key='Family', default=st.session_state.f_d, max_selections=6, help='Descriptive niches for groupings of games.\n Maximum of six choices.')
    
        with col2:
            Game_v = st.multiselect("Game", options=pd.Series(category_keys[1]), key='Game', default=st.session_state.g_d, max_selections=2, help='Top level genres - Family, Strategy, etc.\n Maximum of two choices.')
        
        col3, col4 = st.columns(2)

        with col3:
            Category_v = st.multiselect("Category", options=pd.Series(category_keys[3]), key='Category', default=st.session_state.c_d, max_selections=3, help='Expanded genre tags.\n Maximum of three choices.')
        
        with col4:
            Mechanics_v = st.multiselect("Mechanics", options=pd.Series([x for x in category_keys[2] if x != "Cooperative Game"]), key='Mechanic', default=st.session_state.m_d, max_selections=5, help='Game rules!\n Maximum of five choices.')

        Cooperative_v = st.checkbox('Cooperative?', value=st.session_state.coop_d, key='CoopCheck')
        
        run = st.button("Run Model", use_container_width=True)

        if run:
            if st.session_state.inputs  == revert_cats(Game_v, Mechanics_v, Category_v, Family_v, Cooperative_v):
                st.write('Inputs did not change, results currently loaded.')
            else:
                
                st.session_state.desc_iter = 0
                st.session_state.title_iter = 0
                st.session_state.output_dict = {}

                if Cooperative_v == True:
                    Mechanics_v.append('Cooperative Game')

                st.session_state.inputs  = revert_cats(Game_v, Mechanics_v, Category_v, Family_v, Cooperative_v)
                builder(st.session_state.inputs)
                st.session_state.cur_pair = title_check()

    if st.session_state.output_dict == {}:
        results.empty()
    else:
        with results.expander('Results', expanded=True):

            st.write(
                """
                #### Title:
                """)
            
            
            
            st.write(st.session_state.cur_pair[0])


            t_col1, t_col2 = st.columns(2)
            with t_col1:
                st.button("See Previous Title", on_click=PT_button_clicked, use_container_width=True)

            with t_col2:
                st.button("See Next Title", on_click=NT_button_clicked, use_container_width=True)

            st.write(
                """
                ####  Description:
                """)
            st.write(st.session_state.cur_pair[1].replace('$','\$'))
            
            d_col1, d_col2 = st.columns(2)
            with d_col1:
                st.button("See Previous Description", on_click=PD_button_clicked, use_container_width=True)

            with d_col2:
                st.button("See Next Description", on_click=ND_button_clicked, use_container_width=True)

            st.button('Report', on_click=report, use_container_width=True)

def blog():
    """
    Blog describing the Auto-BG project
    """
    st.write('### Auto-BG: The Board Game Concept Generator')
    st.write("#### Abstract")
    st.write("*This application augments one step in the board game design process by generating potential full game concepts from a collection of descriptive tags.\
             Auto-BG uses a custom pipeline of GPT3 and T5 models to create a new description and proposed titles for a game that doesn't exist today.\
             These concepts support general users and designers-to-be as alternatives to current concepts, seeds for future concepts, or an entertaining thought experiment.*")
    
    # Code adapted from "Display and Download PDF in Streamlit: A Blog Use Case" by My Data Talk, https://towardsdatascience.com/display-and-download-pdf-in-streamlit-a-blog-use-case-5fc1ac87d4b1
    with open('Auto_BG_blog.pdf', "rb") as blog_file:
        blog_pdf = base64.b64encode(blog_file.read()).decode('utf-8')
        blog_display = f'<center><iframe src="data:application/pdf;base64,{blog_pdf}" width=800 height=800 type="application/pdf"></iframe><center>'

    st.markdown(blog_display, unsafe_allow_html=True)



def about_us():
    """
    About us page describing creators of Auto-BG
    """

    st.write('### Creators of Auto-BG')
    st.write('*With a shared love of data science and board games, we came together and created Auto-BG as a Capstone project\
             in the "Master of Applied Data Science" program at the University of Michigan.\
             We hope you enjoy!*')
    st.write("\n")

    # Columns containing information on each of the creators
    col1, col2, col3 = st.columns([1,1,1])

    with col1:
        st.image('./About_Us_Images/NC.jfif', use_column_width=True)
        st.subheader('Nick Canu')
        st.write("""
        **University of Michigan**\n
        ***Master of Applied Data Science, Class of 2023***\n
        N. Canu trained, evaluated, & implemented pipeline classes text and title generator models for Auto-BG.\n 
        Their current board game obsession is Obsession by Kayenta Games.
        """)
    
    with col2:
        st.image('./About_Us_Images/TD.jfif', use_column_width=True)
        st.subheader('Taylor Druhot')
        st.write("""
        **University of Michigan**\n
        ***Master of Applied Data Science, Class of 2023***\n
        T. Druhot scoped and designed the Streamlit application. He also built the UI front end & title generator final module, and integrated modules into live application.\n 
        Avid Magic the Gathering Limited player and deck/engine building board games.
        """)

    with col3:
        st.image('./About_Us_Images/SC.jfif', use_column_width=True)
        st.subheader('Sebastian Capp')
        st.write("""
        **University of Michigan**\n
        ***Master of Applied Data Science, Class of 2023***\n
        S. Capp contributed research, text generator prototyping, streamlit application modules, and visualizations.\n 
        Immense fan of Catan, Coup, and any deduction games.
        """)

def feedback():
    import pandas as pd
    from pathlib import Path

    session = boto3.Session(aws_access_key_id=st.secrets.accesskey, aws_secret_access_key=st.secrets.secretaccesskey)

    st.subheader('Leave comments below')

    with st.form('feed',clear_on_submit=True):
        f = st.text_area('Feedback')
        sub = st.form_submit_button('Submit')
            
        if sub:
            s3=session.client('s3')
            feedbackcsv = s3.get_object(Bucket='auto-bg', Key='Feedback.csv')
            f_f = pd.read_csv(feedbackcsv.get("Body"))
            f_s = pd.DataFrame({'feedback':f}, index=[0])
            f_f = pd.concat([f_f, f_s])
            s3.put_object(Body=f_f.to_csv() ,Bucket='auto-bg', Key='Feedback.csv')


with tab1:
    application()

with tab2:
    blog()

with tab3:
    feedback()

with tab4:
    about_us()