Spaces:
Runtime error
Runtime error
File size: 17,691 Bytes
b0829c1 02c682c 6510d4d b0829c1 bee86f1 a79e4c0 b0829c1 a79e4c0 b0829c1 62fdfea 02c682c 0c79d4a b0829c1 a79e4c0 b0829c1 62fdfea b0829c1 62fdfea b0829c1 62fdfea b0829c1 a79e4c0 b0829c1 c8cce61 a79e4c0 e66f9e1 b0829c1 700b481 3ca0851 62fdfea 27c77fd 26b17df b0829c1 26b17df b0829c1 3ca0851 b0829c1 ae88252 b0829c1 26b17df b0829c1 26b17df b0829c1 26b17df b0829c1 a79e4c0 26b17df 02c682c 26b17df 02c682c 26b17df 55f6f75 26b17df 02c682c 26b17df 55f6f75 26b17df 02c682c 26b17df 55f6f75 26b17df 02c682c 26b17df b0829c1 bee86f1 0c79d4a bee86f1 0c79d4a bee86f1 0c79d4a bee86f1 a79e4c0 b0829c1 a79e4c0 b0829c1 a79e4c0 bee86f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import streamlit as st
import base64
import boto3
st.set_page_config(page_title='Auto-BG: The Game Concept Generator', layout='wide')
tab1, tab2, tab3, tab4 = st.tabs(['App', 'Blog', 'Feedback', 'About Us'])
def application():
###Imports
import pandas as pd
import numpy as np
import re
import urllib
import pickle
import spacy
from spacy.tokens import DocBin
from title_generator import Title_Generator
import gzip
import io
from datetime import date
from description_generator import input_manager, model_control
from pathlib import Path
import base64
#S3 Bucket
session = boto3.Session(aws_access_key_id=st.secrets.accesskey, aws_secret_access_key=st.secrets.secretaccesskey)
#UI Session Variables
if 'desc_iter' not in st.session_state:
st.session_state.desc_iter = 0
if 'title_iter' not in st.session_state:
st.session_state.title_iter = 0
if 'output_dict' not in st.session_state:
st.session_state.output_dict = {}
if 'inputs' not in st.session_state:
st.session_state.inputs = []
if 'cur_pair' not in st.session_state:
st.session_state.cur_pair = ("","Run me!")
if 'f_d' not in st.session_state:
st.session_state.f_d = None
if 'g_d' not in st.session_state:
st.session_state.g_d = None
if 'm_d' not in st.session_state:
st.session_state.m_d = None
if 'c_d' not in st.session_state:
st.session_state.c_d = None
if 'coop_d' not in st.session_state:
st.session_state.coop_d = 0
#helper functions
#reader code extended from https://gist.github.com/thearn/5424244 for alternate load format
def reader(path):
f = gzip.GzipFile(filename=path)
data = f.read()
obj = pickle.loads(data)
f.close()
return obj
def token_expand(path):
nlp = spacy.blank("en")
f = gzip.GzipFile(filename=path)
data = f.read()
obj = pickle.loads(data)
f.close()
doc_bin = DocBin().from_bytes(obj)
docs = list(doc_bin.get_docs(nlp.vocab))
return (docs[1:9],docs[9:192],docs[192:276],docs[276:3901])
def revert_cats(gt, mec, cat, fam, coop):
gt = ["game_type_" + x for x in gt]
mec = ["mechanic_" + x for x in mec]
cat = ["category_" + x for x in cat]
fam = ["family_" + x for x in fam if x != "Game: [redacted]"]
if coop == 1:
co = ["cooperative", "mechanic_Cooperative Game"]
else:
co = []
final_list = [gt,mec,cat,fam, co]
return [item for sublist in final_list for item in sublist]
def builder(ip):
ks = iman.input_parser(iman.set_input(ip))
mctrl.prompt_formatter(ks)
descs = []
for status in np.arange(0,3):
desc = mctrl.call_api(status=status)
clean_desc = mctrl.resp_cleanup(desc)
inter_pair = Tgen.candidate_generator(clean_desc)
out = Tgen.candidate_score(inter_pair,ex_check)
descs.append(out)
results.success("Prompt " +str(status+1)+ "/3 Generated!")
st.session_state.output_dict = {0:descs[0],1:descs[1],2:descs[2]}
def title_check(next=0):
if next==1:
if st.session_state.title_iter == (len(st.session_state.output_dict[st.session_state.desc_iter]['titles'])-1):
st.session_state.title_iter = 0
else:
st.session_state.title_iter +=1
elif next==-1:
if st.session_state.title_iter == 0:
st.session_state.title_iter = (len(st.session_state.output_dict[st.session_state.desc_iter]['titles'])-1)
else:
st.session_state.title_iter -=1
else:
st.session_state.title_iter = 0
cur_title = st.session_state.output_dict[st.session_state.desc_iter]['titles'][st.session_state.title_iter][0]
desc = re.sub(re.compile("__"),cur_title,st.session_state.output_dict[st.session_state.desc_iter]['text'])
return (cur_title, desc.lstrip())
def show_title(val):
out = title_check(next=val)
st.session_state.cur_pair = out
def PT_button_clicked():
show_title(-1)
def NT_button_clicked():
show_title(1)
def PD_button_clicked():
if st.session_state.desc_iter == 0:
st.session_state.desc_iter = 2
st.session_state.title_iter = 0
else:
st.session_state.desc_iter -= 1
st.session_state.title_iter = 0
show_title(0)
def ND_button_clicked():
if st.session_state.desc_iter == 2:
st.session_state.desc_iter = 0
st.session_state.title_iter = 0
else:
st.session_state.desc_iter += 1
st.session_state.title_iter = 0
show_title(0)
def report():
inputs = '|'.join(str(x) for x in st.session_state.inputs)
data = {'rprtd': date.today(),'inpts': inputs, 'title': st.session_state.output_dict[st.session_state.desc_iter]['titles'][st.session_state.title_iter][0], 'desc':st.session_state.output_dict[st.session_state.desc_iter]['text']}
s3=session.client('s3')
reportedjson = s3.get_object(Bucket='auto-bg', Key='reported.json')
r_d = pd.read_json(reportedjson.get("Body"))
r_df = pd.DataFrame(data, index=[len(r_d)+1])
w_p = pd.concat([r_df, r_d])
w_p = w_p.drop_duplicates().reset_index(drop=True)
s3.put_object(Body=w_p.to_json() ,Bucket='auto-bg', Key='reported.json')
###Variables
###Data
@st.cache_data
def fetch_data():
#path load solution from https://stackoverflow.com/questions/69768380/share-streamlit-cant-find-pkl-file
slim_df = pd.read_parquet(Path(__file__).parent / "Persistent_Data/slim_df.parquet.gzip")
search_tokens = token_expand(Path(__file__).parent / "Persistent_Data/token_search.gz")
vector_df = pd.read_parquet(Path(__file__).parent / 'Persistent_Data/vector_df.parquet.gzip')
category_keys = reader(Path(__file__).parent / "Persistent_Data/current_keys.gz")
return slim_df, search_tokens, vector_df, category_keys
slim_df, search_tokens, vector_df, category_keys = fetch_data()
ex_check = ["[Ee]verquest","[Cc]ivilization [Ii][IiVv]","[Cc]ivilization(?=:)","[Cc]ivilization [Ii][Ii]",
"[Cc]ivilization [Ii][Ii][Ii]","[Cc]ivilization V","[Aa]ge [Oo]f [Ee]mpires [Ii][Ii2]([Ii]|\b)", "[Rr]avenloft|[Cc]astle [Rr]avenloft",
"[Ss]cythe(?=:|\b)","[Dd]ungeons [&Aa][ n][Dd ][ Ddr][Ddra][rg][oa][gn][os](ns|\b)",
"[Aa]ge [Oo]f [Ee]mpires [Ii][Ii]: [Tt]he [Aa]ge [Oo]f [Kk]ings","[Aa]ge [Oo]f [Ee]mpires 2: [Tt]he [Aa]ge [Oo]f [Kk]ings",
"[Aa]ge [Oo]f [Ee]mpires","Doctor Who"]
###Models
@st.cache_resource
def setup_models():
spacy.cli.download("en_core_web_md")
return Title_Generator('./t5_model', slim_df), input_manager(vector_df, slim_df, search_tokens), model_control(apikey=st.secrets.key,model_id=st.secrets.model)
Tgen, iman, mctrl = setup_models()
#UI
#Application
###Intro
st.title("""Auto-BG: The Game Concept Generator""")
with st.expander("How to use", expanded=True):
st.write(
"""
Discover the concept for your next favorite game!
How do you use Auto-BG?
Pick any set of tags from four selectors below: Family, Game, Mechanic, and Category.
If you are looking to lose together - activate the cooperative toggle.
See ? icons for detailed information on each type of tag.
Select any pre-configured demo below to see how Auto-BG works on the tag set for a popular board game.
"""
)
results = st.empty()
###Demo
with st.expander('Demos'):
st.write("""These buttons run Auto-BG on the tag set for real games you might be familiar with,
choose a button and the corresponding tags automatically fill the selectors below.
Press run and see how Auto-BG creates an alternate concept for these hit titles!
""")
b1, b2, b3 = st.columns(3)
with b1:
SoC = st.button('Catan', use_container_width=True)
if SoC:
st.session_state.f_d = [
'Animals: Sheep',
'Components: Hexagonal Tiles',
'Components: Wooden pieces & boards'
]
st.session_state.g_d = ['Family Game', 'Strategy Game']
st.session_state.m_d = [
'Hexagon Grid',
'Network and Route Building',
'Random Production',
'Trading',
'Variable Set-up'
]
st.session_state.c_d = [
'Economic',
'Negotiation'
]
st.session_state.coop_d = 0
with b2:
TtR = st.button('Ticket to Ride', use_container_width=True)
if TtR:
st.session_state.f_d = [
'Components: Map (Continental / National scale)',
'Continents: North America',
'Country: USA'
]
st.session_state.g_d = ['Family Game']
st.session_state.m_d = [
'Contracts',
'End Game Bonuses',
'Network and Route Building',
'Push Your Luck',
'Set Collection'
]
st.session_state.c_d = [
'Trains'
]
st.session_state.coop_d = 0
with b3:
P = st.button('Pandemic', use_container_width=True)
if P:
st.session_state.f_d = [
'Components: Map (Global Scale)',
'Components: Multi-Use Cards',
'Medical: Diseases',
'Region: The World',
'Theme: Science'
]
st.session_state.g_d = ['Family Game', 'Strategy Game']
st.session_state.m_d = [
'Action Points',
'Point to Point Movement',
'Trading',
'Variable Player Powers'
]
st.session_state.c_d = [
'Medical'
]
st.session_state.coop_d = 1
###Form
with st.expander("Auto-BG", expanded=True):
col1, col2 = st.columns(2)
with col1:
Family_v = st.multiselect("Family", options=pd.Series(category_keys[4][8:]), key='Family', default=st.session_state.f_d, max_selections=6, help='Descriptive niches for groupings of games.\n Maximum of six choices.')
with col2:
Game_v = st.multiselect("Game", options=pd.Series(category_keys[1]), key='Game', default=st.session_state.g_d, max_selections=2, help='Top level genres - Family, Strategy, etc.\n Maximum of two choices.')
col3, col4 = st.columns(2)
with col3:
Category_v = st.multiselect("Category", options=pd.Series(category_keys[3]), key='Category', default=st.session_state.c_d, max_selections=3, help='Expanded genre tags.\n Maximum of three choices.')
with col4:
Mechanics_v = st.multiselect("Mechanics", options=pd.Series([x for x in category_keys[2] if x != "Cooperative Game"]), key='Mechanic', default=st.session_state.m_d, max_selections=5, help='Game rules!\n Maximum of five choices.')
Cooperative_v = st.checkbox('Cooperative?', value=st.session_state.coop_d, key='CoopCheck')
run = st.button("Run Model", use_container_width=True)
if run:
if st.session_state.inputs == revert_cats(Game_v, Mechanics_v, Category_v, Family_v, Cooperative_v):
st.write('Inputs did not change, results currently loaded.')
else:
st.session_state.desc_iter = 0
st.session_state.title_iter = 0
st.session_state.output_dict = {}
if Cooperative_v == True:
Mechanics_v.append('Cooperative Game')
st.session_state.inputs = revert_cats(Game_v, Mechanics_v, Category_v, Family_v, Cooperative_v)
builder(st.session_state.inputs)
st.session_state.cur_pair = title_check()
if st.session_state.output_dict == {}:
results.empty()
else:
with results.expander('Results', expanded=True):
st.write(
"""
#### Title:
""")
st.write(st.session_state.cur_pair[0])
t_col1, t_col2 = st.columns(2)
with t_col1:
st.button("See Previous Title", on_click=PT_button_clicked, use_container_width=True)
with t_col2:
st.button("See Next Title", on_click=NT_button_clicked, use_container_width=True)
st.write(
"""
#### Description:
""")
st.write(st.session_state.cur_pair[1].replace('$','\$'))
d_col1, d_col2 = st.columns(2)
with d_col1:
st.button("See Previous Description", on_click=PD_button_clicked, use_container_width=True)
with d_col2:
st.button("See Next Description", on_click=ND_button_clicked, use_container_width=True)
st.button('Report', on_click=report, use_container_width=True)
def blog():
"""
Blog describing the Auto-BG project
"""
st.write('### Auto-BG: The Board Game Concept Generator')
st.write("#### Abstract")
st.write("*This application augments one step in the board game design process by generating potential full game concepts from a collection of descriptive tags.\
Auto-BG uses a custom pipeline of GPT3 and T5 models to create a new description and proposed titles for a game that doesn't exist today.\
These concepts support general users and designers-to-be as alternatives to current concepts, seeds for future concepts, or an entertaining thought experiment.*")
# Code adapted from "Display and Download PDF in Streamlit: A Blog Use Case" by My Data Talk, https://towardsdatascience.com/display-and-download-pdf-in-streamlit-a-blog-use-case-5fc1ac87d4b1
with open('Auto_BG_blog.pdf', "rb") as blog_file:
blog_pdf = base64.b64encode(blog_file.read()).decode('utf-8')
blog_display = f'<center><iframe src="data:application/pdf;base64,{blog_pdf}" width=800 height=800 type="application/pdf"></iframe><center>'
st.markdown(blog_display, unsafe_allow_html=True)
def about_us():
"""
About us page describing creators of Auto-BG
"""
st.write('### Creators of Auto-BG')
st.write('*With a shared love of data science and board games, we came together and created Auto-BG as a Capstone project\
in the "Master of Applied Data Science" program at the University of Michigan.\
We hope you enjoy!*')
st.write("\n")
# Columns containing information on each of the creators
col1, col2, col3 = st.columns([1,1,1])
with col1:
st.image('./About_Us_Images/NC.jfif', use_column_width=True)
st.subheader('Nick Canu')
st.write("""
**University of Michigan**\n
***Master of Applied Data Science, Class of 2023***\n
N. Canu trained, evaluated, & implemented pipeline classes text and title generator models for Auto-BG.\n
Their current board game obsession is Obsession by Kayenta Games.
""")
with col2:
st.image('./About_Us_Images/TD.jfif', use_column_width=True)
st.subheader('Taylor Druhot')
st.write("""
**University of Michigan**\n
***Master of Applied Data Science, Class of 2023***\n
T. Druhot scoped and designed the Streamlit application. He also built the UI front end & title generator final module, and integrated modules into live application.\n
Avid Magic the Gathering Limited player and deck/engine building board games.
""")
with col3:
st.image('./About_Us_Images/SC.jfif', use_column_width=True)
st.subheader('Sebastian Capp')
st.write("""
**University of Michigan**\n
***Master of Applied Data Science, Class of 2023***\n
S. Capp contributed research, text generator prototyping, streamlit application modules, and visualizations.\n
Immense fan of Catan, Coup, and any deduction games.
""")
def feedback():
import pandas as pd
from pathlib import Path
session = boto3.Session(aws_access_key_id=st.secrets.accesskey, aws_secret_access_key=st.secrets.secretaccesskey)
st.subheader('Leave comments below')
with st.form('feed',clear_on_submit=True):
f = st.text_area('Feedback')
sub = st.form_submit_button('Submit')
if sub:
s3=session.client('s3')
feedbackcsv = s3.get_object(Bucket='auto-bg', Key='Feedback.csv')
f_f = pd.read_csv(feedbackcsv.get("Body"))
f_s = pd.DataFrame({'feedback':f}, index=[0])
f_f = pd.concat([f_f, f_s])
s3.put_object(Body=f_f.to_csv() ,Bucket='auto-bg', Key='Feedback.csv')
with tab1:
application()
with tab2:
blog()
with tab3:
feedback()
with tab4:
about_us() |