File size: 10,161 Bytes
6204efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdb701
872fcfa
bf46203
872fcfa
6204efe
 
 
 
 
 
872fcfa
6204efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872fcfa
6204efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872fcfa
 
6204efe
 
 
 
 
872fcfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6204efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download, login
from apscheduler.schedulers.background import BackgroundScheduler

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    CONTACT_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    SUB_TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data


def restart_space():
    API.restart_space(repo_id="Auto-Arena/Leaderboard")


csv_path = f"./src/results/auto-arena-llms-results-20241007.csv"
csv_path_chinese = f"./src/results/auto-arena-llms-results-chinese-20240531.csv"
df_results = load_data(csv_path).sort_values(by="Rank")
df_results_chinese = load_data(csv_path_chinese)

all_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score']
show_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score']
TYPES = ['number', 'markdown', 'str', 'str', 'str', 'str', 'number']

df_results_init = df_results.copy()[show_columns]
df_results_chinese_init = df_results_chinese.copy()[show_columns]

def update_table(
    hidden_df: pd.DataFrame,
    # columns: list,
    #type_query: list,
    open_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    # filtered_df = filter_queries(query, filtered_df)
    # df = select_columns(filtered_df, columns)
    filtered_df = hidden_df.copy()
    
    # filtered_df = filtered_df[filtered_df['type'].isin(type_query)]
    map_open = {'open': 'Yes', 'closed': 'No'}
    filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]

    filtered_df = filter_queries(query, filtered_df)
    # filtered_df = filtered_df[[map_columns[k] for k in columns]]
    # deduplication
    # df = df.drop_duplicates(subset=["Model"])
    df = filtered_df.drop_duplicates()
    df = df[show_columns]
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Model'].str.contains(query, case=False))]


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)

    return filtered_df


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # the first tab
        with gr.TabItem("English", elem_id="llm-benchmark-Sum", id=0):
            # meta-info
            with gr.Row():
                with gr.Column():
                    search_bar = gr.Textbox(
                        placeholder=" πŸ” Search for models you are interested in (separate multiple models with `;`) and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    ) 
            # with gr.Row():
                # with gr.Column():
                #     type_query = gr.CheckboxGroup(
                #         choices=["🟒 base", "πŸ”Ά chat"],
                #         value=["πŸ”Ά chat" ],
                #         label="model types to show",
                #         elem_id="type-select",
                #         interactive=True,
                #     )
                with gr.Column():
                    open_query = gr.CheckboxGroup(
                        choices=["open", "closed"],
                        value=["open", "closed"],
                        label="open-source OR closed-source models?",
                        elem_id="open-select",
                        interactive=True,
                    )
            
            leaderboard_table = gr.components.Dataframe(
                value = df_results,
                datatype = TYPES,
                elem_id = "leaderboard-table",
                interactive = False,
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )

            gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.")

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_results_init,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    #type_query,
                    open_query,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

            #for selector in [type_query, open_query]:
            for selector in [open_query]:
                selector.change(
                    update_table,
                    [   
                        # df_avg,
                        hidden_leaderboard_table_for_search,
                        # shown_columns,
                        #type_query,
                        open_query,
                        # filter_columns_type,
                        # filter_columns_precision,
                        # filter_columns_size,
                        # deleted_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                )

        with gr.TabItem("Chinese", elem_id="llm-benchmark-Sum", id=1):
            # meta-info
            with gr.Row():
                with gr.Column():
                    search_bar = gr.Textbox(
                        placeholder=" πŸ” Search for models you are interested in (separate multiple models with `;`) and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    ) 
            # with gr.Row():
                # with gr.Column():
                #     type_query = gr.CheckboxGroup(
                #         choices=["🟒 base", "πŸ”Ά chat"],
                #         value=["πŸ”Ά chat" ],
                #         label="model types to show",
                #         elem_id="type-select",
                #         interactive=True,
                #     )
                with gr.Column():
                    open_query = gr.CheckboxGroup(
                        choices=["open", "closed"],
                        value=["open", "closed"],
                        label="open-source OR closed-source models?",
                        elem_id="open-select",
                        interactive=True,
                    )
            
            leaderboard_table = gr.components.Dataframe(
                value = df_results_chinese,
                datatype = TYPES,
                elem_id = "leaderboard-table",
                interactive = False,
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )

            gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.")

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_results_chinese_init,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    #type_query,
                    open_query,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

            #for selector in [type_query, open_query]:
            for selector in [open_query]:
                selector.change(
                    update_table,
                    [   
                        # df_avg,
                        hidden_leaderboard_table_for_search,
                        # shown_columns,
                        #type_query,
                        open_query,
                        # filter_columns_type,
                        # filter_columns_precision,
                        # filter_columns_size,
                        # deleted_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                )

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=1):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
    
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )
    
    gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text")

demo.launch()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)