Spaces:
Runtime error
Runtime error
File size: 21,282 Bytes
de055a4 1f5d8b4 de055a4 7022682 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 1f5d8b4 de055a4 4436966 3a88b8f de055a4 eb2fcc1 de055a4 2afc358 de055a4 2afc358 de055a4 3a88b8f 2afc358 3a88b8f 2afc358 3a88b8f de055a4 1f5d8b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
import gradio as gr
import torch
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
from PIL import Image
import plotly.graph_objects as go
import numpy as np
import os
import torch.nn as nn
from sklearn.metrics import jaccard_score, accuracy_score
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
import torch.nn.functional as F
import seaborn as sns
from functools import partial
from pytorch_grad_cam.utils.image import (
show_cam_on_image,
preprocess_image as grad_preprocess,
)
from pytorch_grad_cam import GradCAM
import cv2
import transformers
from torchvision import transforms
import albumentations as A
device = "cuda" if torch.cuda.is_available() else "cpu"
data_folder = "data_sample"
id2label = {
0: "void",
1: "flat",
2: "construction",
3: "object",
4: "nature",
5: "sky",
6: "human",
7: "vehicle",
}
label2id = {v: k for k, v in id2label.items()}
num_labels = len(id2label)
checkpoint = "nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
image_processor = SegformerImageProcessor(do_resize=False)
state_dict_path = f"runs/{checkpoint}/best_model.pt"
model = SegformerForSemanticSegmentation.from_pretrained(
checkpoint,
num_labels=num_labels,
id2label=id2label,
label2id=label2id,
ignore_mismatched_sizes=True,
)
loaded_state_dict = torch.load(
state_dict_path, map_location=torch.device("cpu"), weights_only=True
)
model.load_state_dict(loaded_state_dict)
model = model.to(device)
model.eval()
# ---- Partie Segmentation
def load_and_prepare_images(image_name, segformer=False):
"""
Charge et prépare les images, les masques et les prédictions associées pour une image donnée.
Args:
image_name (str): Le nom du fichier de l'image à charger.
segformer (bool, optional): Si True, prédit également le masque avec SegFormer. Par défaut False.
Returns:
tuple: Contient l'image originale redimensionnée, le masque réel, la prédiction FPN,
et la prédiction SegFormer si `segformer` est True.
"""
image_path = os.path.join(data_folder, "images", image_name)
mask_name = image_name.replace("_leftImg8bit.png", "_gtFine_labelIds.png")
mask_path = os.path.join(data_folder, "masks", mask_name)
fpn_pred_path = os.path.join(data_folder, "resnet101_mask", image_name)
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image not found: {image_path}")
if not os.path.exists(mask_path):
raise FileNotFoundError(f"Mask not found: {mask_path}")
if not os.path.exists(fpn_pred_path):
raise FileNotFoundError(f"FPN prediction not found: {fpn_pred_path}")
original_image = Image.open(image_path).convert("RGB")
original = original_image.resize((1024, 512))
true_mask = np.array(Image.open(mask_path))
fpn_pred = np.array(Image.open(fpn_pred_path))
if segformer:
segformer_pred = predict_segmentation(original)
return original, true_mask, fpn_pred, segformer_pred
return original, true_mask, fpn_pred
def predict_segmentation(image):
"""
Prédit la segmentation d'une image donnée à l'aide d'un modèle pré-entraîné.
Args:
image (PIL.Image.Image): L'image à segmenter.
Returns:
numpy.ndarray: La carte de segmentation prédite.
"""
inputs = image_processor(images=image, return_tensors="pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
pixel_values = inputs.pixel_values.to(device)
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
logits = outputs.logits
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1], # (height, width)
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0].cpu().numpy()
return pred_seg
def process_image(image_name):
"""
Traite une image en chargeant l'image originale, le masque réel, et les prédictions de masques.
Envoie la liste de tuple à l'interface "Predictions" de Gradio
Args:
image_name (str): Le nom de l'image à traiter.
Returns:
list: Une liste de tuples contenant l'image et son titre associé.
"""
original, true_mask, fpn_pred, segformer_pred = load_and_prepare_images(
image_name, segformer=True
)
true_mask_colored = colorize_mask(true_mask)
true_mask_colored = Image.fromarray(true_mask_colored.astype("uint8"))
true_mask_colored = true_mask_colored.resize((1024, 512))
# fpn_pred_colored = colorize_mask(fpn_pred)
segformer_pred_colored = colorize_mask(segformer_pred)
segformer_pred_colored = Image.fromarray(segformer_pred_colored.astype("uint8"))
segformer_pred_colored = segformer_pred_colored.resize((1024, 512))
return [
(original, "Image originale"),
(true_mask_colored, "Masque réel"),
(fpn_pred, "Prédiction FPN"),
(segformer_pred_colored, "Prédiction SegFormer"),
]
def create_cityscapes_label_colormap():
"""
Crée une colormap pour les labels Cityscapes.
Returns:
numpy.ndarray: Un tableau 2D où chaque ligne représente la couleur RGB d'un label.
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [78, 82, 110]
colormap[1] = [128, 64, 128]
colormap[2] = [154, 156, 153]
colormap[3] = [168, 167, 18]
colormap[4] = [80, 108, 28]
colormap[5] = [112, 164, 196]
colormap[6] = [168, 28, 52]
colormap[7] = [16, 18, 112]
return colormap
# Créer la colormap une fois
cityscapes_colormap = create_cityscapes_label_colormap()
def colorize_mask(mask):
return cityscapes_colormap[mask]
# ---- Fin Partie Segmentation
# ---- Partie EDA
def analyse_mask(real_mask, num_labels):
"""
Analyse la distribution des classes dans un masque réel.
Args:
real_mask (numpy.ndarray): Le masque de labels réels.
num_labels (int): Le nombre total de classes.
Returns:
dict: Un dictionnaire contenant les proportions des classes dans le masque.
"""
counts = np.bincount(real_mask.ravel(), minlength=num_labels)
total_pixels = real_mask.size
class_proportions = counts / total_pixels
return dict(enumerate(class_proportions))
def show_eda(image_name):
"""
Affiche une analyse exploratoire de la distribution des classes pour une image et son masque associé.
Args:
image_name (str): Le nom de l'image à analyser.
Returns:
tuple: Contient l'image originale, le masque réel coloré et une figure Plotly représentant
la distribution des classes.
"""
original_image, true_mask, _ = load_and_prepare_images(image_name)
class_proportions = analyse_mask(true_mask, num_labels)
cityscapes_colormap = create_cityscapes_label_colormap()
true_mask_colored = colorize_mask(true_mask)
true_mask_colored = Image.fromarray(true_mask_colored.astype("uint8"))
true_mask_colored = true_mask_colored.resize((1024, 512))
# Trier les classes par proportion croissante
sorted_classes = sorted(
class_proportions.keys(), key=lambda x: class_proportions[x]
)
# Préparer les données pour le barplot
categories = [id2label[i] for i in sorted_classes]
values = [class_proportions[i] for i in sorted_classes]
color_list = [
f"rgb({cityscapes_colormap[i][0]}, {cityscapes_colormap[i][1]}, {cityscapes_colormap[i][2]})"
for i in sorted_classes
]
# Distribution des classes avec la colormap personnalisée
fig = go.Figure()
fig.add_trace(
go.Bar(
x=categories,
y=values,
marker_color=color_list,
text=[f"{v:.2f}" for v in values],
textposition="outside",
)
)
# Ajouter un titre et des labels, modifier la rotation et la taille de la police
fig.update_layout(
title={"text": "Distribution des classes", "font": {"size": 24}},
xaxis_title={"text": "Catégories", "font": {"size": 18}},
yaxis_title={"text": "Proportion", "font": {"size": 18}},
xaxis_tickangle=0, # Rotation modifiée à -45 degrés
uniformtext_minsize=12,
uniformtext_mode="hide",
font=dict(size=14),
autosize=True,
bargap=0.2,
height=600,
margin=dict(l=20, r=20, t=50, b=20),
)
return original_image, true_mask_colored, fig
# ----Fin Partie EDA
# ----Partie Explication GradCam
class SegformerWrapper(nn.Module):
"""
Un wrapper pour le modèle SegFormer qui renvoie uniquement les logits en sortie.
Args:
model (torch.nn.Module): Le modèle SegFormer pré-entraîné.
"""
def __init__(self, model):
"""
Initialise le SegformerWrapper.
Args:
model (torch.nn.Module): Le modèle SegFormer pré-entraîné.
"""
super().__init__()
self.model = model
def forward(self, x):
"""
Renvoie les logits du modèle au lieu de renvoyer un dictionnaire.
Args:
x (torch.Tensor): Les entrées du modèle.
Returns:
torch.Tensor: Les logits du modèle.
"""
output = self.model(x)
return output.logits
class SemanticSegmentationTarget:
"""
Représente une classe cible pour la segmentation sémantique utilisée dans GradCAM.
Args:
category (int): L'index de la catégorie cible.
mask (numpy.ndarray): Le masque binaire indiquant les pixels d'intérêt.
"""
def __init__(self, category, mask):
"""
Initialise la cible de segmentation sémantique.
Args:
category (int): L'index de la catégorie cible.
mask (numpy.ndarray): Le masque binaire indiquant les pixels d'intérêt.
"""
self.category = category
self.mask = torch.from_numpy(mask)
if torch.cuda.is_available():
self.mask = self.mask.cuda()
def __call__(self, model_output):
if isinstance(
model_output, (dict, transformers.modeling_outputs.SemanticSegmenterOutput)
):
logits = (
model_output["logits"]
if isinstance(model_output, dict)
else model_output.logits
)
elif isinstance(model_output, torch.Tensor):
logits = model_output
else:
raise ValueError(f"Unexpected model_output type: {type(model_output)}")
if logits.dim() == 4: # [batch, classes, height, width]
return (logits[0, self.category, :, :] * self.mask).sum()
elif logits.dim() == 3: # [classes, height, width]
return (logits[self.category, :, :] * self.mask).sum()
else:
raise ValueError(f"Unexpected logits shape: {logits.shape}")
def segformer_reshape_transform_huggingface(tensor, width, height):
"""
Réorganise les dimensions du tenseur pour qu'elles correspondent au format attendu par GradCAM.
Args:
tensor (torch.Tensor): Le tenseur à réorganiser.
width (int): La nouvelle largeur.
height (int): La nouvelle hauteur.
Returns:
torch.Tensor: Le tenseur réorganisé.
"""
result = tensor.reshape(tensor.size(0), height, width, tensor.size(2))
result = result.transpose(2, 3).transpose(1, 2)
return result
def explain_model(image_name, category_name):
"""
Explique les prédictions du modèle SegFormer en utilisant GradCAM pour une image et une catégorie données.
Args:
image_name (str): Le nom de l'image à expliquer.
category_name (str): Le nom de la catégorie cible.
Returns:
matplotlib.figure.Figure: Une figure matplotlib contenant la carte de chaleur GradCAM superposée sur l'image originale.
"""
original_image, _, _ = load_and_prepare_images(image_name)
rgb_img = np.float32(original_image) / 255
img_tensor = transforms.ToTensor()(rgb_img)
input_tensor = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)(img_tensor)
input_tensor = input_tensor.unsqueeze(0).to(device)
wrapped_model = SegformerWrapper(model).to(device)
with torch.no_grad():
output = wrapped_model(input_tensor)
upsampled_logits = nn.functional.interpolate(
output, size=input_tensor.shape[-2:], mode="bilinear", align_corners=False
)
normalized_masks = torch.nn.functional.softmax(upsampled_logits, dim=1).cpu()
category = label2id[category_name]
mask = normalized_masks[0].argmax(dim=0).numpy()
mask_float = np.float32(mask == category)
reshape_transform = partial(
segformer_reshape_transform_huggingface, # réorganise les dimensions du tenseur pour qu'elles correspondent au format attendu par GradCAM.
width=img_tensor.shape[2] // 32,
height=img_tensor.shape[1] // 32,
)
target_layers = [wrapped_model.model.segformer.encoder.layer_norm[-1]]
mask_float_resized = cv2.resize(mask_float, (output.shape[3], output.shape[2]))
targets = [SemanticSegmentationTarget(category, mask_float_resized)]
cam = GradCAM(
model=wrapped_model,
target_layers=target_layers,
reshape_transform=reshape_transform,
)
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
threshold = 0.01 # Seuil de 1% de sureté
thresholded_cam = grayscale_cam.copy()
thresholded_cam[grayscale_cam < threshold] = 0
if np.max(thresholded_cam) > 0:
thresholded_cam = thresholded_cam / np.max(thresholded_cam)
else:
thresholded_cam = grayscale_cam[0]
resized_cam = cv2.resize(
thresholded_cam[0], (input_tensor.shape[3], input_tensor.shape[2])
)
masked_cam = resized_cam * mask_float
if np.max(masked_cam) > 0:
cam_image = show_cam_on_image(rgb_img, masked_cam, use_rgb=True)
else:
cam_image = original_image
fig, ax = plt.subplots(figsize=(15, 10))
ax.imshow(cam_image)
ax.axis("off")
ax.set_title(f"Masque de chaleur GradCam pour {category_name}", color="white")
margin = 0.02 # Adjust this value to change the size of the margin
margin_color = "#0a0f1e"
fig.subplots_adjust(left=margin, right=1 - margin, top=1 - margin, bottom=margin)
fig.patch.set_facecolor(margin_color)
plt.close()
return fig
# ----Fin Partie Explication GradCam
# ----Partie Data augmentation
import random
def change_image():
"""
Sélectionne et charge aléatoirement une image depuis un dossier spécifié.
Returns:
PIL.Image.Image: L'image sélectionnée.
"""
image_dir = (
"data_sample/images" # Remplacez par le chemin de votre dossier d'images
)
image_list = [f for f in os.listdir(image_dir) if f.endswith(".png")]
random_image = random.choice(image_list)
return Image.open(os.path.join(image_dir, random_image))
def apply_augmentation(image, augmentation_names):
"""
Applique une ou plusieurs augmentations à une image.
Args:
image (PIL.Image.Image): L'image à augmenter.
augmentation_names (list of str): Les noms des augmentations à appliquer.
Returns:
PIL.Image.Image: L'image augmentée.
"""
augmentations = {
"Horizontal Flip": A.HorizontalFlip(p=1),
"Shift Scale Rotate": A.ShiftScaleRotate(p=1),
"Random Brightness Contrast": A.RandomBrightnessContrast(p=1),
"RGB Shift": A.RGBShift(p=1),
"Blur": A.Blur(blur_limit=(5, 7), p=1),
"Gaussian Noise": A.GaussNoise(p=1),
"Grid Distortion": A.GridDistortion(p=1),
"Random Sun": A.RandomSunFlare(p=1),
}
image_array = np.array(image)
if augmentation_names is not None:
selected_augs = [
augmentations[name] for name in augmentation_names if name in augmentations
]
compose = A.Compose(selected_augs)
# Appliquer la composition d'augmentations
augmented = compose(image=image_array)
return Image.fromarray(augmented["image"])
else:
return image
# ---- Fin Partie Data augmentation
image_list = [
f for f in os.listdir(os.path.join(data_folder, "images")) if f.endswith(".png")
]
category_list = list(id2label.values())
image_name = "dusseldorf_000012_000019_leftImg8bit.png"
default_image = os.path.join(data_folder, "images", image_name)
my_theme = gr.Theme.from_hub("gstaff/whiteboard")
with gr.Blocks(title="Preuve de concept", theme=my_theme) as demo:
gr.Markdown("# Projet 10 - Développer une preuve de concept")
with gr.Tab("Distribution"):
gr.Markdown("## Distribution des classes Cityscapes")
gr.Markdown(
"### Visualisation de la distribution de chaque classe selon l'image choisie."
)
eda_image_input = gr.Dropdown(
choices=image_list,
label="Sélectionnez une image",
)
with gr.Row():
original_image_output = gr.Image(type="pil", label="Image originale")
original_mask_output = gr.Image(type="pil", label="Masque original")
class_distribution_plot = gr.Plot(label="Distribution des classes")
eda_image_input.change(
fn=show_eda,
inputs=eda_image_input,
outputs=[
original_image_output,
original_mask_output,
class_distribution_plot,
],
)
with gr.Tab("Data Augmentation"):
gr.Markdown("## Visualisation de l'augmentation des données")
gr.Markdown(
"### Sélectionnez une ou plusieurs augmentations pour l'appliquer à l'image."
)
gr.Markdown("### Vous pouvez également changer d'image.")
with gr.Row():
image_display = gr.Image(
value=default_image,
label="Image",
show_download_button=False,
interactive=False,
)
augmented_image = gr.Image(label="Image Augmentée")
with gr.Row():
change_image_button = gr.Button("Changer image")
augmentation_dropdown = gr.Dropdown(
choices=[
"Horizontal Flip",
"Shift Scale Rotate",
"Random Brightness Contrast",
"RGB Shift",
"Blur",
"Gaussian Noise",
"Grid Distortion",
"Random Sun",
],
label="Sélectionnez une augmentation",
multiselect=True,
)
apply_button = gr.Button("Appliquer l'augmentation")
change_image_button.click(fn=change_image, outputs=image_display)
apply_button.click(
fn=apply_augmentation,
inputs=[image_display, augmentation_dropdown],
outputs=augmented_image,
)
with gr.Tab("Prédictions"):
gr.Markdown("## Comparaison de segmentations d'images Cityscapes")
gr.Markdown(
"### Sélectionnez une image pour voir la comparaison entre le masque réel, la prédiction FPN (pré-enregistré) et la prédiction du modèle SegFormer."
)
image_input = gr.Dropdown(choices=image_list, label="Sélectionnez une image")
gallery_output = gr.Gallery(
label="Résultats de segmentation",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
height="512px",
min_width="1024px",
)
image_input.change(fn=process_image, inputs=image_input, outputs=gallery_output)
with gr.Tab("Explication SegFormer"):
gr.Markdown("## Explication du modèle SegFormer")
gr.Markdown(
"### La méthode Grad-CAM est une technique populaire de visualisation qui est utile pour comprendre comment un réseau neuronal convolutif a été conduit à prendre une décision de classification. Elle est spécifique à chaque classe, ce qui signifie qu’elle peut produire une visualisation distincte pour chaque classe présente dans l’image."
)
gr.Markdown(
"### NB: Si l'image s'affiche sans masque, c'est que le modèle ne trouve pas de zones significatives pour une catégorie donnée."
)
with gr.Row():
explain_image_input = gr.Dropdown(
choices=image_list, label="Sélectionnez une image"
)
explain_category_input = gr.Dropdown(
choices=category_list, label="Sélectionnez une catégorie"
)
explain_button = gr.Button("Expliquer")
explain_output = gr.Plot(label="Explication SegFormer", min_width=200)
explain_button.click(
fn=explain_model,
inputs=[explain_image_input, explain_category_input],
outputs=explain_output,
)
# Lancer l'application
demo.launch(favicon_path="favicon.ico")
|