Spaces:
Sleeping
Sleeping
File size: 1,258 Bytes
d4640a8 ea0a0ae 794e69a e2eafa6 fb7988f e2eafa6 206b3c8 e2eafa6 ea0a0ae e2eafa6 ea0a0ae 814690d e2eafa6 1c9cf55 814690d ea0a0ae d66c9c9 e2eafa6 d66c9c9 206b3c8 814690d 04c7dbc 814690d e2eafa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from typing import List
import pytesseract
from PIL import Image
import gradio as gr
def tesseract_ocr(filepath: str, keyword: str):
# Load the image and perform OCR
image = Image.open(filepath)
extracted_text = pytesseract.image_to_string(image=image)
# Highlight the keyword in the extracted text
if keyword:
highlighted_text = extracted_text.replace(keyword, f"<mark>{keyword}</mark>")
else:
highlighted_text = extracted_text
return highlighted_text
title = "Tesseract OCR"
description = "Gradio demo for Tesseract. Tesseract is an open-source text recognition (OCR) Engine."
article = "<p style='text-align: center'><a href='https://tesseract-ocr.github.io/' target='_blank'>Tesseract documentation</a> | <a href='https://github.com/tesseract-ocr/tesseract' target='_blank'>Github Repo</a></p>"
demo = gr.Interface(
fn=tesseract_ocr,
inputs=[
gr.Image(type="filepath", label="Upload Image for OCR"),
gr.Textbox(label="Keyword to Highlight", placeholder="Enter a keyword...") # Keyword input
],
outputs='html',
title=title,
description=description,
article=article,
)
if __name__ == '__main__':
demo.launch()
print("Finished running")
|