File size: 4,465 Bytes
46f7684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# from ultralytics import YOLO
# import cv2
# import matplotlib.pyplot as plt
# import matplotlib.patches as patches
# import numpy as np
# import requests

# model = YOLO('best (5).pt')
# img_url = 'https://www.greendna.in/cdn/shop/products/1296x728_Holy_Basil_1155x.jpg?v=1591462900'
# response = requests.get(img_url, stream=True)
# img_array = np.asarray(bytearray(response.content), dtype=np.uint8)
# img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)

# classes_ = {0: 'anthurium', 1: 'clivia', 2: 'dieffenbachia', 3: 'dracaena', 4: 'gloxinia', 5: 'kalanchoe', 6: 'orchid', 7: 'sansevieria', 8: 'violet', 9: 'zamioculcas'}

# results = model.predict(source=img, conf = 0.4)

# # results = model.predict('api/default_1280-720-screenshot.webp', confidence=40, overlap=30).json()
# boxes = results[0].boxes.xyxy.tolist()
# classes = results[0].boxes.cls.tolist()
# names = results[0].names
# confidences = results[0].boxes.conf.tolist()

# print(boxes)
# print(classes)
# print(names)
# print(confidences)

# # Iterate through the results
# for box, cls, conf in zip(boxes, classes, confidences):
#     x1, y1, x2, y2 = box
#     confidence = conf
#     detected_class = cls
#     name = names[int(cls)]

# def plot_img_bbox(img, target):
#     fig, a = plt.subplots(1,1)
#     fig.set_size_inches(10, 10)
#     a.imshow(img)
#     for i, box in enumerate(target):
#         #print(target['boxes'])
#         x, y, width, height  = box[0], box[1], box[2]-box[0], box[3]-box[1]
# #         if arr[target['labels'][i]] == 'ad':
#         rect = patches.Rectangle((x, y),
#                                      width, height,
#                                      linewidth = 2,
#                                      edgecolor = 'r',
#                                      facecolor = 'none')
#         a.text(x, y-20, classes_[classes[i]], color='b', verticalalignment='top')

#         a.add_patch(rect)
#     plt.show()

# # if length of boxes is zero that means no deceptive popups were found
# plot_img_bbox(img, boxes)

import requests
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import gradio as gr

model = YOLO('best (5).pt')

def plot_img_bbox(img, target, save_path, classes):
    fig, a = plt.subplots(1, 1)
    fig.set_size_inches(10, 10)
    classes_ = {0: 'anthurium', 1: 'clivia', 2: 'dieffenbachia', 3: 'dracaena', 4: 'gloxinia', 5: 'kalanchoe', 6: 'orchid', 7: 'sansevieria', 8: 'violet', 9: 'zamioculcas'}
    a.imshow(img)
    for i, box in enumerate(target):
        x, y, width, height = box[0], box[1], box[2] - box[0], box[3] - box[1]
        rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor='r', facecolor='none')
        a.text(x, y - 20, classes_[classes[i]], color='b', verticalalignment='top')
        a.add_patch(rect)
    plt.savefig(save_path)
    plt.close()  

    upload_url = upload_to_cloudinary(save_path)

    return upload_url

def upload_to_cloudinary(local_file_path):
    upload_url = 'https://api.cloudinary.com/v1_1/ddvajyjou/image/upload'
    files = {'file': open(local_file_path, 'rb')}
    params = {'upload_preset': 'nb6tvi1b'}  

    response = requests.post(upload_url, files=files, params=params)

    if response.status_code == 200:
        return response.json()['secure_url']
    else:
        print(f"Error uploading to Cloudinary: {response.status_code}")
        return None

def index(img_url):
    response = requests.get(img_url, stream=True)
    img_array = np.asarray(bytearray(response.content), dtype=np.uint8)
    img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
    
    print(img_url)

    results = model.predict(source=img, conf = 0.4)

    boxes = results[0].boxes.xyxy.tolist()
    classes = results[0].boxes.cls.tolist()
    names = results[0].names
    confidences = results[0].boxes.conf.tolist()

    print(boxes)
    print(classes)
    print(names)
    print(confidences)

    final_url = plot_img_bbox(img, boxes, 'image.png', classes)
    return final_url

inputs_image_url = [
    gr.Textbox(type="text", label="Image URL"),
]

outputs_result_dict = [
    gr.Textbox(type="text", label="Result Dictionary"),
]

interface_image_url = gr.Interface(
    fn=index,
    inputs=inputs_image_url,
    outputs=outputs_result_dict,
    title="Popup detection",
    cache_examples=False,
)

gr.TabbedInterface(
    [interface_image_url],
    tab_names=['Image inference']
).queue().launch()