File size: 7,453 Bytes
909e414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import torch
import torchaudio
import numpy as np
from pathlib import Path
from huggingface_hub import hf_hub_download
from omegaconf import DictConfig

from miipher_2.model.feature_cleaner import FeatureCleaner
from miipher_2.lightning_vocoders.lightning_module import HiFiGANLightningModule

# Model configuration
MODEL_REPO_ID = "Atotti/miipher-2-HuBERT-HiFi-GAN-v0.1"
ADAPTER_FILENAME = "checkpoint_199k_fixed.pt"
VOCODER_FILENAME = "epoch=77-step=137108.ckpt"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SAMPLE_RATE_INPUT = 16000
SAMPLE_RATE_OUTPUT = 22050

# Cache for models
models_cache = {}

def download_models():
    """Download models from Hugging Face Hub"""
    print("Downloading models from Hugging Face Hub...")

    adapter_path = hf_hub_download(
        repo_id=MODEL_REPO_ID,
        filename=ADAPTER_FILENAME,
        cache_dir="./models"
    )

    vocoder_path = hf_hub_download(
        repo_id=MODEL_REPO_ID,
        filename=VOCODER_FILENAME,
        cache_dir="./models"
    )

    return adapter_path, vocoder_path

def load_models():
    """Load models into memory"""
    if "cleaner" in models_cache and "vocoder" in models_cache:
        return models_cache["cleaner"], models_cache["vocoder"]

    adapter_path, vocoder_path = download_models()

    # Model configuration
    model_config = DictConfig({
        "hubert_model_name": "utter-project/mHuBERT-147",
        "hubert_layer": 6,
        "adapter_hidden_dim": 768
    })

    # Initialize FeatureCleaner
    print("Loading FeatureCleaner...")
    cleaner = FeatureCleaner(model_config).to(DEVICE).eval()

    # Load adapter weights
    adapter_checkpoint = torch.load(adapter_path, map_location=DEVICE, weights_only=False)
    cleaner.load_state_dict(adapter_checkpoint["model_state_dict"])

    # Load vocoder
    print("Loading vocoder...")
    vocoder = HiFiGANLightningModule.load_from_checkpoint(
        vocoder_path, map_location=DEVICE
    ).to(DEVICE).eval()

    # Cache models
    models_cache["cleaner"] = cleaner
    models_cache["vocoder"] = vocoder

    return cleaner, vocoder

@torch.inference_mode()
def enhance_audio(audio_path, progress=gr.Progress()):
    """Enhance audio using Miipher-2 model"""
    try:
        progress(0, desc="Loading models...")
        cleaner, vocoder = load_models()

        progress(0.2, desc="Loading audio...")
        # Load audio
        waveform, sr = torchaudio.load(audio_path)

        # Resample to 16kHz if needed
        if sr != SAMPLE_RATE_INPUT:
            waveform = torchaudio.functional.resample(waveform, sr, SAMPLE_RATE_INPUT)

        # Convert to mono if stereo
        waveform = waveform.mean(0, keepdim=True)

        # Move to device
        waveform = waveform.to(DEVICE)

        progress(0.4, desc="Extracting features...")
        # Extract features using FeatureCleaner
        with torch.no_grad(), torch.autocast(device_type=DEVICE.type, dtype=torch.float16, enabled=(DEVICE.type == "cuda")):
            features = cleaner(waveform)

            # Ensure correct shape for vocoder
            if features.dim() == 2:
                features = features.unsqueeze(0)

            progress(0.7, desc="Generating enhanced audio...")
            # Generate audio using vocoder
            # Lightning SSL-Vocoderの入力形式に合わせる (batch, seq_len, input_channels)
            batch = {"input_feature": features.transpose(1, 2)}
            enhanced_audio = vocoder.generator_forward(batch)

            # Convert to numpy
            enhanced_audio = enhanced_audio.squeeze(0).cpu().to(torch.float32).detach().numpy()

        progress(1.0, desc="Enhancement complete!")

        # Save audio using torchaudio to avoid Gradio format issues
        enhanced_audio = np.clip(enhanced_audio, -1.0, 1.0)
        enhanced_audio_tensor = torch.from_numpy(enhanced_audio)

        # Ensure 2D tensor: (channels, samples)
        if enhanced_audio_tensor.dim() == 1:
            enhanced_audio_tensor = enhanced_audio_tensor.unsqueeze(0)

        # Save to temporary file using torchaudio
        import tempfile
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
            torchaudio.save(tmp_file.name, enhanced_audio_tensor, SAMPLE_RATE_OUTPUT)
            return tmp_file.name

    except Exception as e:
        raise gr.Error(f"Error during enhancement: {str(e)}")

# Create Gradio interface
def create_interface():
    title = "🎤 Miipher-2 Speech Enhancement"

    description = """
    <div style="text-align: center;">
        <p>High-quality speech enhancement using <b>Miipher-2</b> (HuBERT + Parallel Adapter + HiFi-GAN)</p>
        <p>📄 <a href="https://arxiv.org/abs/2505.04457">Paper</a> |
           🤗 <a href="https://huggingface.co/Atotti/miipher-2-HuBERT-HiFi-GAN-v0.1">Model</a> |
           💻 <a href="https://github.com/your-repo/open-miipher-2">GitHub</a></p>
    </div>
    """

    article = """
    ## How it works

    1. **Upload** a noisy or degraded audio file
    2. **Process** using Miipher-2 model
    3. **Download** the enhanced audio

    ### Model Details
    - **SSL Backbone**: mHuBERT-147 (Multilingual)
    - **Adapter**: Parallel adapters at layer 6
    - **Vocoder**: HiFi-GAN trained on SSL features
    - **Input**: Any sample rate (automatically resampled to 16kHz)
    - **Output**: 22.05kHz high-quality audio

    ### Tips
    - Works best with speech audio
    - Supports various noise types (background noise, reverb, etc.)
    - Processing time depends on audio length and hardware
    """

    examples = [
        ["examples/noisy_speech_1.wav"],
        ["examples/noisy_speech_2.wav"],
        ["examples/reverb_speech.wav"],
    ]

    with gr.Blocks(title=title, theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"# {title}")
        gr.Markdown(description)

        with gr.Row():
            with gr.Column():
                input_audio = gr.Audio(
                    label="Input Audio (Noisy/Degraded)",
                    type="filepath",
                    sources=["upload", "microphone"]
                )

                enhance_btn = gr.Button("🚀 Enhance Audio", variant="primary")

            with gr.Column():
                output_audio = gr.Audio(
                    label="Enhanced Audio",
                    type="filepath",
                    interactive=False
                )

        # Add examples if they exist
        examples_dir = Path("examples")
        if examples_dir.exists():
            example_files = list(examples_dir.glob("*.wav")) + list(examples_dir.glob("*.mp3"))
            if example_files:
                gr.Examples(
                    examples=[[str(f)] for f in example_files[:3]],
                    inputs=input_audio,
                    outputs=output_audio,
                    fn=enhance_audio,
                    cache_examples=True
                )

        gr.Markdown(article)

        # Connect the enhancement function
        enhance_btn.click(
            fn=enhance_audio,
            inputs=input_audio,
            outputs=output_audio,
            show_progress=True
        )

    return demo

# Launch the app
if __name__ == "__main__":
    # Pre-load models
    print("Pre-loading models...")
    load_models()
    print("Models loaded successfully!")

    # Create and launch interface
    demo = create_interface()
    demo.launch()