File size: 14,582 Bytes
25f05fc 477e70c 25f05fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import numpy as np
from sklearn.metrics import *
from omegaconf import OmegaConf
import os
import random
from mcts import MCTS
import esm
from encoders import AptaBLE
from utils import get_scores, API_Dataset, get_nt_esm_dataset
from accelerate import Accelerator
import glob
import os
import requests
from transformers import AutoTokenizer, AutoModelForMaskedLM
# accelerator = Accelerator(kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)]) # NOTE: Buggy | Disables unused parameter issue
accelerator = Accelerator()
class AptaBLE_Pipeline():
"""In-house API prediction score pipeline."""
def __init__(self, lr, dropout, weight_decay, epochs, model_type, model_version, model_save_path, accelerate_save_path, tensorboard_logdir, *args, **kwargs):
self.device = accelerator.device
self.lr = lr
self.weight_decay = weight_decay
self.epochs = epochs
self.model_type = model_type
self.model_version = model_version
self.model_save_path = model_save_path
self.accelerate_save_path = accelerate_save_path
self.tensorboard_logdir = tensorboard_logdir
esm_prot_encoder, self.esm_alphabet = esm.pretrained.esm.pretrained.esm2_t33_650M_UR50D() # ESM-2 Encoder
# Freeze ESM-2
for name, param in esm_prot_encoder.named_parameters():
param.requires_grad = False
for name, param in esm_prot_encoder.named_parameters():
if "layers.30" in name or "layers.31" in name or "layers.32" in name:
param.requires_grad = True
self.batch_converter = self.esm_alphabet.get_batch_converter(truncation_seq_length=1678)
# self.nt_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-2.5b-1000g")
# nt_encoder = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-2.5b-1000g")
self.nt_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-50m-multi-species", trust_remote_code=True)
nt_encoder = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-50m-multi-species", trust_remote_code=True)
self.model = AptaBLE(
apta_encoder=nt_encoder,
prot_encoder=esm_prot_encoder,
dropout=dropout,
).to(self.device)
self.criterion = torch.nn.BCELoss().to(self.device)
def train(self):
print('Training the model!')
# Initialize writer instance
writer = SummaryWriter(log_dir=f"log/{self.model_type}/{self.model_version}")
# Initialize early stopping
self.early_stopper = EarlyStopper(3, 3)
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, [4, 7, 10], 0.1)
# Configure pytorch objects for distributed environment (i.e. sharded dataloader, multiple copies of model, etc.)
self.model, self.optimizer, self.train_loader, self.test_loader, self.bench_loader, self.scheduler = accelerator.prepare(self.model, self.optimizer, self.train_loader, self.test_loader, self.bench_loader, self.scheduler)
best_loss = 100
for epoch in range(1, self.epochs+1):
self.model.train()
loss_train, _, _ = self.batch_step(self.train_loader, train_mode=True)
self.model.eval()
self.scheduler.step()
with torch.no_grad():
loss_test, pred_test, target_test = self.batch_step(self.test_loader, train_mode=False)
test_scores = get_scores(target_test, pred_test)
print("\tTrain Loss: {: .6f}\tTest Loss: {: .6f}\tTest ACC: {:.6f}\tTest AUC: {:.6f}\tTest MCC: {:.6f}\tTest PR_AUC: {:.6f}\tF1: {:.6f}\n".format(loss_train ,loss_test, test_scores['acc'], test_scores['roc_auc'], test_scores['mcc'], test_scores['pr_auc'], test_scores['f1']))
# stop_early = self.early_stopper.early_stop(loss_test)
# Early stop - model has not improved on eval set.
# if stop_early:
# break
# Only do checkpointing after near-convergence
if epoch > 2:
with torch.no_grad():
loss_bench, pred_bench, target_bench = self.batch_step(self.bench_loader, train_mode=False)
bench_scores = get_scores(target_bench, pred_bench)
print("\Bench Loss: {: .6f}\Bench ACC: {:.6f}\Bench AUC: {:.6f}\tBench MCC: {:.6f}\tBench PR_AUC: {:.6f}\tBench F1: {:.6f}\n".format(loss_bench, bench_scores['acc'], bench_scores['roc_auc'], bench_scores['mcc'], bench_scores['pr_auc'], bench_scores['f1']))
writer.add_scalar("Loss/bench", loss_bench, epoch)
for k, v in bench_scores.items():
if isinstance(v, float):
writer.add_scalar(f'{k}/bench', bench_scores[k], epoch)
# Checkpoint based off of benchmark criteria
# If model has improved and early stopping patience counter was just reset:
if bench_scores['mcc'] > 0.5 and test_scores['mcc'] > 0.5 and loss_bench < 0.9 and accelerator.is_main_process:
best_loss = loss_test
# Remove all other files
# for f in glob.glob(f'{self.model_save_path}/model*.pt'):
# os.remove(f)
accelerator.save_state(self.accelerate_save_path)
model = accelerator.unwrap_model(self.model)
torch.save(model.state_dict(), f'{self.model_save_path}/model_epoch={epoch}.pt')
print(f'Model saved at {self.model_save_path}')
print(f'Accelerate statistics saved at {self.accelerate_save_path}!') # Access via accelerator.load_state("./output")
# logging
writer.add_scalar("Loss/train", loss_train, epoch)
writer.add_scalar("Loss/test", loss_test, epoch)
for k, v in test_scores.items():
if isinstance(v, float):
writer.add_scalar(f'{k}/test', test_scores[k], epoch)
print("Training finished | access tensorboard via 'tensorboard --logdir=runs'.")
writer.flush()
writer.close()
def batch_step(self, loader, train_mode = True):
loss_total = 0
pred = np.array([])
target = np.array([])
for batch_idx, (apta, esm_prot, y, apta_attn, prot_attn) in enumerate(loader):
if train_mode:
self.optimizer.zero_grad()
y_pred = self.predict(apta, esm_prot, apta_attn, prot_attn)
y_true = torch.tensor(y, dtype=torch.float32).to(self.device) # not needed since accelerator modifies dataloader to automatically map input objects to correct dev
loss = self.criterion(torch.flatten(y_pred), y_true)
if train_mode:
accelerator.backward(loss) # Accelerate backward() method scales gradients and uses appropriate backward method as configured across devices
self.optimizer.step()
loss_total += loss.item()
pred = np.append(pred, torch.flatten(y_pred).clone().detach().cpu().numpy())
target = np.append(target, torch.flatten(y_true).clone().detach().cpu().numpy())
mode = 'train' if train_mode else 'eval'
print(mode + "[{}/{}({:.0f}%)]".format(batch_idx, len(loader), 100. * batch_idx / len(loader)), end = "\r", flush=True)
loss_total /= len(loader)
return loss_total, pred, target
def predict(self, apta, esm_prot, apta_attn, prot_attn):
y_pred, _, _, _ = self.model(apta, esm_prot, apta_attn, prot_attn)
return y_pred
def inference(self, apta, prot, labels):
"""Perform inference on a batch of aptamer/protein pairs."""
self.model.eval()
max_length = 275#nt_tokenizer.model_max_length
inputs = [(i, j) for i, j in zip(labels, prot)]
_, _, prot_tokens = self.batch_converter(inputs)
apta_toks = self.nt_tokenizer.batch_encode_plus(apta, return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
apta_attention_mask = apta_toks != self.nt_tokenizer.pad_token_id
# # truncating
prot_tokenized = prot_tokens[:, :1680]
# # padding
prot_ex = torch.ones((prot_tokenized.shape[0], 1680), dtype=torch.int64)*self.esm_alphabet.padding_idx
prot_ex[:, :prot_tokenized.shape[1]] = prot_tokenized
prot_attention_mask = prot_ex != self.esm_alphabet.padding_idx
loader = DataLoader(API_Dataset(apta_toks, prot_ex, labels, apta_attention_mask, prot_attention_mask), batch_size=1, shuffle=False)
self.model, loader = accelerator.prepare(self.model, loader)
with torch.no_grad():
_, pred, _ = self.batch_step(loader, train_mode=False)
return pred
def recommend(self, target, n_aptamers, depth, iteration, verbose=True):
candidates = []
_, _, prot_tokens = self.batch_converter([(1, target)])
prot_tokenized = torch.tensor(prot_tokens, dtype=torch.int64)
# adjusting for max protein sequence length during model training
encoded_targetprotein = torch.ones((prot_tokenized.shape[0], 1678), dtype=torch.int64)*self.esm_alphabet.padding_idx
encoded_targetprotein[:, :prot_tokenized.shape[1]] = prot_tokenized
encoded_targetprotein = encoded_targetprotein.to(self.device)
mcts = MCTS(encoded_targetprotein, depth=depth, iteration=iteration, states=8, target_protein=target, device=self.device, esm_alphabet=self.esm_alphabet)
for _ in range(n_aptamers):
mcts.make_candidate(self.model)
candidates.append(mcts.get_candidate())
self.model.eval()
with torch.no_grad():
sim_seq = np.array([mcts.get_candidate()])
print('first candidate: ', sim_seq)
# apta = torch.tensor(rna2vec(sim_seq), dtype=torch.int64).to(self.device)
apta = self.nt_tokenizer.batch_encode_plus(sim_seq, return_tensors='pt', padding='max_length', max_length=275)['input_ids']
apta_attn = apta != self.nt_tokenizer.pad_token_id
prot_attn = encoded_targetprotein != self.esm_alphabet.padding_idx
score, _, _, _ = self.model(apta.to(self.device), encoded_targetprotein.to(self.device), apta_attn.to(self.device), prot_attn.to(self.device))
if verbose:
candidate = mcts.get_candidate()
print("candidate:\t", candidate, "\tscore:\t", score)
print("*"*80)
mcts.reset()
def set_data_for_training(self, filepath, batch_size):
# ds_train, ds_test, ds_bench = get_nt_esm_dataset(filepath, self.nt_tokenizer, self.batch_converter, self.esm_alphabet)
ds_train, ds_test, ds_bench = get_nt_esm_dataset(filepath, self.nt_tokenizer, self.batch_converter, self.esm_alphabet)
self.train_loader = DataLoader(API_Dataset(ds_train[0], ds_train[1], ds_train[2], ds_train[3], ds_train[4]), batch_size=batch_size, shuffle=True)
self.test_loader = DataLoader(API_Dataset(ds_test[0], ds_test[1], ds_test[2], ds_test[3], ds_test[4]), batch_size=batch_size, shuffle=False)
self.bench_loader = DataLoader(API_Dataset(ds_bench[0], ds_bench[1], ds_bench[2], ds_bench[3], ds_bench[4]), batch_size=batch_size, shuffle=False)
class EarlyStopper:
def __init__(self, patience=1, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = float('inf')
def early_stop(self, validation_loss):
if validation_loss < self.min_validation_loss:
self.min_validation_loss = validation_loss
self.counter = 0
elif validation_loss > (self.min_validation_loss + self.min_delta):
self.counter += 1
if self.counter >= self.patience:
return True
return False
def seed_torch(seed=5471):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main():
conf = OmegaConf.load('config.yaml')
hyperparameters = conf.hyperparameters
logging = conf.logging
lr = hyperparameters['lr']
wd = hyperparameters['weight_decay']
dropout = hyperparameters['dropout']
batch_size = hyperparameters['batch_size']
epochs = hyperparameters['epochs']
model_type = logging['model_type']
model_version = logging['model_version']
model_save_path = logging['model_save_path']
accelerate_save_path = logging['accelerate_save_path']
tensorboard_logdir = logging['tensorboard_logdir']
seed = hyperparameters['seed']
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
seed_torch(seed=seed)
pipeline = AptaBLE_Pipeline(
lr=lr,
weight_decay=wd,
epochs=epochs,
model_type=model_type,
model_version=model_version,
model_save_path=model_save_path,
accelerate_save_path=accelerate_save_path,
tensorboard_logdir=tensorboard_logdir,
d_model=128,
d_ff=512,
n_layers=6,
n_heads=8,
dropout=dropout,
load_best_pt=True, # already loads the pretrained model using the datasets included in repo -- no need to run the bottom two cells
device='cuda',
seed=seed)
datapath = "./data/ABW_real_dna_aptamers_HC_v6.pkl"
# datapath = './data/ABW_real_dna_aptamers_HC_neg_scrambles_neg_homology.pkl'
pipeline.set_data_for_training(datapath, batch_size=batch_size)
pipeline.train()
endpoint = 'https://slack.atombioworks.com/hooks/t3y99qu6pi81frhwrhef1849wh'
msg = {"text": "Model has finished training."}
_ = requests.post(endpoint,
json=msg,
headers={"Content-Type": "application/json"},
)
return
if __name__ == "__main__":
# launch training w/ the following: "accelerate launch api_prediction.py [args]"
main()
|