File size: 8,109 Bytes
2616ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import numpy as np
import random
import math
from sklearn.metrics import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
import pickle
def word2idx(word, words):
if word in words.keys():
return int(words[word])
return 0
def pad_seq(dataset, max_len):
output = []
for seq in dataset:
pad = np.zeros(max_len)
pad[:len(seq)] = seq
output.append(pad)
return np.array(output)
def str2bool(seq):
out = []
for s in seq:
if s == "positive":
out.append(1)
elif s == "negative":
out.append(0)
return np.array(out)
class API_Dataset(Dataset):
def __init__(self, apta, esm_prot, y, apta_attn_mask, prot_attn_mask):
super(Dataset, self).__init__()
self.apta = np.array(apta, dtype=np.int64)
self.esm_prot = np.array(esm_prot, dtype=np.int64)
self.y = np.array(y, dtype=np.int64)
self.apta_attn_mask = np.array(apta_attn_mask)
self.prot_attn_mask = np.array(prot_attn_mask)
self.len = len(self.apta)
def __len__(self):
return self.len
def __getitem__(self, index):
return torch.tensor(self.apta[index], dtype=torch.int64), torch.tensor(self.esm_prot[index], dtype=torch.int64), torch.tensor(self.y[index], dtype=torch.int64), torch.tensor(self.apta_attn_mask[index], dtype=torch.int64), torch.tensor(self.prot_attn_mask[index], dtype=torch.int64)
def find_opt_threshold(target, pred):
result = 0
best = 0
for i in range(0, 1000):
pred_threshold = np.where(pred > i/1000, 1, 0)
now = f1_score(target, pred_threshold)
if now > best:
result = i/1000
best = now
return result
def argument_seqset(seqset):
arg_seqset = []
for s, ss in seqset:
arg_seqset.append([s, ss])
arg_seqset.append([s[::-1], ss[::-1]])
return arg_seqset
def augment_apis(apta, prot, ys):
aug_apta = []
aug_prot = []
aug_y = []
for a, p, y in zip(apta, prot, ys):
aug_apta.append(a)
aug_prot.append(p)
aug_y.append(y)
aug_apta.append(a[::-1])
aug_prot.append(p)
aug_y.append(y)
return np.array(aug_apta), np.array(aug_prot), np.array(aug_y)
def load_data_source(filepath):
with open(filepath,"rb") as fr:
dataset = pickle.load(fr)
dataset_train = np.array(dataset[dataset["dataset"]=="training dataset"])
dataset_test = np.array(dataset[dataset["dataset"]=="test dataset"])
dataset_bench = np.array(dataset[dataset['dataset']=='benchmark dataset'])
return dataset_train, dataset_test, dataset_bench
def get_dataset(filepath, prot_max_len, n_prot_vocabs, prot_words):
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
datasets_train = [rna2vec(arg_apta), tokenize_sequences(arg_prot, prot_max_len, n_prot_vocabs, prot_words), str2bool(arg_y)]
datasets_test = [rna2vec(dataset_test[:, 0]), tokenize_sequences(dataset_test[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_test[:, 2])]
datasets_bench = [rna2vec(dataset_bench[:, 0]), tokenize_sequences(dataset_bench[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_bench[:, 2])]
return datasets_train, datasets_test, datasets_bench
def get_esm_dataset(filepath, batch_converter, alphabet):
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
# arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
# arg_prot is a np.array of strings (4640,) -> convert this to np.array of size (2x4640) where first row is a label
arg_apta, arg_prot, arg_y = dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2]
arg_apta, arg_prot, arg_y = augment_apis(arg_apta, arg_prot, arg_y)
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)]
_, _, prot_tokens = batch_converter(train_inputs)
datasets_train = [rna2vec(arg_apta), prot_tokens, str2bool(arg_y)]
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])]
_, _, test_prot_tokens = batch_converter(test_inputs)
datasets_test = [rna2vec(dataset_test[:, 0]), test_prot_tokens, str2bool(dataset_test[:, 2])]
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])]
_, _, bench_prot_tokens = batch_converter(bench_inputs)
# truncating
bench_prot_tokenized = bench_prot_tokens[:, :1678]
# padding
prot_ex = torch.ones((bench_prot_tokenized.shape[0], 1678), dtype=torch.int64)*alphabet.padding_idx
prot_ex[:, :bench_prot_tokenized.shape[1]] = bench_prot_tokenized
datasets_bench = [rna2vec(dataset_bench[:, 0]), prot_ex, str2bool(dataset_bench[:, 2])]
return datasets_train, datasets_test, datasets_bench
def get_nt_esm_dataset(filepath, nt_tokenizer, batch_converter, alphabet):
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
# arg_prot is a np.array of strings (4640,) -> convert this to np.array of size (2x4640) where first row is a label
max_length = 275#nt_tokenizer.model_max_length
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)]
_, _, prot_tokens = batch_converter(train_inputs)
apta_toks = nt_tokenizer.batch_encode_plus(arg_apta, return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
prot_attention_mask = prot_tokens != alphabet.padding_idx
# datasets_train = [apta_toks, prot_tokens, str2bool(arg_y)]
datasets_train = [apta_toks, prot_tokens, str2bool(arg_y), apta_attention_mask, prot_attention_mask]
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])]
_, _, test_prot_tokens = batch_converter(test_inputs)
prot_ex = torch.ones((test_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx
prot_ex[:, :test_prot_tokens.shape[1]] = test_prot_tokens
apta_toks = nt_tokenizer.batch_encode_plus(dataset_test[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
prot_attention_mask = prot_ex != alphabet.padding_idx
datasets_test = [apta_toks, prot_ex, str2bool(dataset_test[:, 2]), apta_attention_mask, prot_attention_mask]
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])]
_, _, bench_prot_tokens = batch_converter(bench_inputs)
# padding
prot_ex = torch.ones((bench_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx
prot_ex[:, :bench_prot_tokens.shape[1]] = bench_prot_tokens
apta_toks = nt_tokenizer.batch_encode_plus(dataset_bench[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
prot_attention_mask = prot_ex != alphabet.padding_idx
datasets_bench = [apta_toks, prot_ex, str2bool(dataset_bench[:, 2]), apta_attention_mask, prot_attention_mask]
return datasets_train, datasets_test, datasets_bench
def get_scores(target, pred):
threshold = find_opt_threshold(target, pred)
pred_threshold = np.where(pred > threshold, 1, 0)
acc = accuracy_score(target, pred_threshold)
roc_auc = roc_auc_score(target, pred)
mcc = matthews_corrcoef(target, pred_threshold)
f1 = f1_score(target, pred_threshold)
pr_auc = average_precision_score(target, pred)
cls_report = classification_report(target, pred_threshold)
scores = {
'threshold': threshold,
'acc': acc,
'roc_auc': roc_auc,
'mcc': mcc,
'f1': f1,
'pr_auc': pr_auc,
'cls_report': cls_report
}
return scores
|