File size: 10,690 Bytes
20c9cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.weight_norm import weight_norm
import math
import numpy as np

class cross_attn_block(nn.Module):
    def __init__(self, embed_dim, n_heads, dropout):
        super().__init__()
        self.heads = n_heads
        self.mha = nn.MultiheadAttention(embed_dim, n_heads, dropout, batch_first=True)
        self.ln_apt = nn.LayerNorm(embed_dim)
        self.ln_prot = nn.LayerNorm(embed_dim)
        self.ln_out = nn.LayerNorm(embed_dim)
        self.linear = nn.Linear(embed_dim, embed_dim)
    
    def forward(self, embeddings_x, embeddings_y, x_t, y_t):

        # compute attention masks
        attn_mask = generate_3d_mask(y_t, x_t, self.heads)

        # apply layer norms
        embeddings_x_n = self.ln_apt(embeddings_x)
        embeddings_y_n = self.ln_prot(embeddings_y)

        # perform cross-attention
        reps = embeddings_y + self.mha(embeddings_y_n, embeddings_x_n, embeddings_x_n, attn_mask=attn_mask)[0]
        return reps + self.linear(self.ln_out(reps))

class self_attn_block(nn.Module):
    def __init__(self, d_embed, heads, dropout):
        super().__init__()
        # self.l1 = nn.Linear(d_linear, d_linear)
        self.heads = heads
        self.ln1 = nn.LayerNorm(d_embed)
        self.ln2 = nn.LayerNorm(d_embed)
        self.mha = nn.MultiheadAttention(d_embed, self.heads, dropout, batch_first=True)
        self.linear = nn.Linear(d_embed, d_embed)
    
    def forward(self, embeddings_x, x_t):

        # compute attention masks
        # attn_mask = generate_3d_mask(x_t, x_t, self.heads)
        # apply layer norm
        embeddings_x_n = self.ln1(embeddings_x)
        reps = embeddings_x + self.mha(embeddings_x_n, embeddings_x_n, embeddings_x_n, key_padding_mask=~x_t)[0]
        return reps + self.linear(self.ln2(reps))


class AptaBLE(nn.Module):
    def __init__(self, apta_encoder, prot_encoder, dropout):
        super(AptaBLE, self).__init__()

        #hyperparameters
        self.apta_encoder = apta_encoder
        self.prot_encoder = prot_encoder

        self.flatten = nn.Flatten()
        self.prot_reshape = nn.Linear(1280, 512)
        self.apta_keep = nn.Linear(512, 512)

        self.l1 = nn.Linear(1024, 1024)
        self.l2 = nn.Linear(1024, 512)
        self.l3 = nn.Linear(512, 256)
        self.l4 = nn.Linear(256, 1)
        self.can = CAN(512, 8, 1, 'mean_all_tok')
        self.bn1 = nn.BatchNorm1d(1024)
        self.bn2 = nn.BatchNorm1d(512)
        self.bn3 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()



    def forward(self, apta_in, esm_prot, apta_attn, prot_attn):
        apta = self.apta_encoder(apta_in, apta_attn, apta_attn, output_hidden_states=True)['hidden_states'][-1] # output: (BS X #apt_toks x apt_embed_dim), encoder outputs (BS x MLM & sec. structure feature embeddings)
        
        prot = self.prot_encoder(esm_prot, repr_layers=[33], return_contacts=False)['representations'][33]

        prot = self.prot_reshape(prot)
        apta = self.apta_keep(apta)

        output, cross_map, prot_map, apta_map = self.can(prot, apta, prot_attn, apta_attn)
        output = self.relu(self.l1(output))
        output = self.bn1(output)
        output = self.relu(self.l2(output))
        output = self.bn2(output)
        output = self.relu(self.l3(output))
        output = self.bn3(output)
        output = self.l4(output)
        output = torch.sigmoid(output)

        return output, cross_map, prot_map, apta_map

def find_opt_threshold(target, pred):
    result = 0
    best = 0

    for i in range(0, 1000):
        pred_threshold = np.where(pred > i/1000, 1, 0)
        now = f1_score(target, pred_threshold)
        if now > best:
            result = i/1000
            best = now

    return result

def argument_seqset(seqset):
    arg_seqset = []
    for s, ss in seqset:
        arg_seqset.append([s, ss]) 
        
        arg_seqset.append([s[::-1], ss[::-1]])

    return arg_seqset

def augment_apis(apta, prot, ys):
    aug_apta = []
    aug_prot = []
    aug_y = []
    for a, p, y in zip(apta, prot, ys):
        aug_apta.append(a) 
        aug_prot.append(p)
        aug_y.append(y)
        
        aug_apta.append(a[::-1]) 
        aug_prot.append(p)
        aug_y.append(y)
        
        aug_apta.append(a) 
        aug_prot.append(p[::-1])
        aug_y.append(y)
        
        aug_apta.append(a[::-1]) 
        aug_prot.append(p[::-1])
        aug_y.append(y)
        
    return np.array(aug_apta), np.array(aug_prot), np.array(aug_y)

def generate_3d_mask(batch1, batch2, heads):
    # Ensure the batches are tensors
    batch1 = torch.tensor(batch1, dtype=torch.bool)
    batch2 = torch.tensor(batch2, dtype=torch.bool)
    
    # Validate that the batches have the same length
    if batch1.size(0) != batch2.size(0):
        raise ValueError("The batches must have the same number of vectors")
    
    # Generate the 3D mask for each pair of vectors
    out_mask = []
    masks = torch.stack([torch.ger(vec1, vec2) for vec1, vec2 in zip(batch1, batch2)])
    for j in range(masks.shape[0]):
        out_mask.append(torch.stack([masks[j] for i in range(heads)]))
    # out_mask = torch.tensor(out_mask, dtype=bool)
    out_mask = torch.cat(out_mask)
    
    # Replace False with -inf and True with 0
    out_mask = out_mask.float()  # Convert to float to allow -inf
    out_mask[out_mask == 0] = -1e9
    out_mask[out_mask == 1] = 0
    
    return out_mask

class CAN(nn.Module):
    def __init__(self, hidden_dim, num_heads, group_size, aggregation):
        super(CAN, self).__init__()
        self.aggregation = aggregation
        self.group_size = group_size
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.head_dim = hidden_dim // num_heads

        # Protein weights
        self.prot_query = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.prot_key = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.prot_val = nn.Linear(hidden_dim, hidden_dim, bias=False)

        # Aptamer weights
        self.apta_query = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.apta_key = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.apta_val = nn.Linear(hidden_dim, hidden_dim, bias=False)

        # linear
        self.lp = nn.Linear(hidden_dim, hidden_dim)

    def mask_logits(self, logits, mask_row, mask_col, inf=1e6):
        N, L1, L2, H = logits.shape
        mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H)
        mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H)

        # Ignore all padding tokens across both embeddings
        mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col)

        # Set logit to -1e6 if masked
        logits = torch.where(mask_pair, logits, logits - inf)
        alpha = torch.softmax(logits, dim=2)
        mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1)
        alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
        return alpha

    def rearrange_heads(self, x, n_heads, n_ch):
        # rearrange embedding for MHA
        s = list(x.size())[:-1] + [n_heads, n_ch]
        return x.view(*s)

    def grouped_embeddings(self, x, mask, group_size):
        N, L, D = x.shape
        groups = L // group_size
        # Average embeddings within each group
        x_grouped = x.view(N, groups, group_size, D).mean(dim=2)
        # Ignore groups without any non-padding tokens
        mask_grouped = mask.view(N, groups, group_size).any(dim=2)
        return x_grouped, mask_grouped

    def forward(self, protein, aptamer, mask_prot, mask_apta):
        # Group embeddings before applying multi-head attention
        protein_grouped, mask_prot_grouped = self.grouped_embeddings(protein, mask_prot, self.group_size)
        apta_grouped, mask_apta_grouped = self.grouped_embeddings(aptamer, mask_apta, self.group_size)

        # Compute queries, keys, values for both protein and aptamer after grouping
        query_prot = self.rearrange_heads(self.prot_query(protein_grouped), self.num_heads, self.head_dim)
        key_prot = self.rearrange_heads(self.prot_key(protein_grouped), self.num_heads, self.head_dim)
        value_prot = self.rearrange_heads(self.prot_val(protein_grouped), self.num_heads, self.head_dim)

        query_apta = self.rearrange_heads(self.apta_query(apta_grouped), self.num_heads, self.head_dim)
        key_apta = self.rearrange_heads(self.apta_key(apta_grouped), self.num_heads, self.head_dim)
        value_apta = self.rearrange_heads(self.apta_val(apta_grouped), self.num_heads, self.head_dim)

        # Compute attention scores
        logits_pp = torch.einsum('blhd, bkhd->blkh', query_prot, key_prot)
        logits_pa = torch.einsum('blhd, bkhd->blkh', query_prot, key_apta)
        logits_ap = torch.einsum('blhd, bkhd->blkh', query_apta, key_prot)
        logits_aa = torch.einsum('blhd, bkhd->blkh', query_apta, key_apta)

        ml_pp = self.mask_logits(logits_pp, mask_prot_grouped, mask_prot_grouped)
        ml_pa = self.mask_logits(logits_pa, mask_prot_grouped, mask_apta_grouped)
        ml_ap = self.mask_logits(logits_ap, mask_apta_grouped, mask_prot_grouped)
        ml_aa = self.mask_logits(logits_aa, mask_apta_grouped, mask_apta_grouped)

        # Combine heads, combine self-attended and cross-attended representations (via avg)
        prot_embedding = (torch.einsum('blkh, bkhd->blhd', ml_pp, value_prot).flatten(-2) +
                   torch.einsum('blkh, bkhd->blhd', ml_pa, value_apta).flatten(-2)) / 2
        apta_embedding = (torch.einsum('blkh, bkhd->blhd', ml_ap, value_prot).flatten(-2) +
                   torch.einsum('blkh, bkhd->blhd', ml_aa, value_apta).flatten(-2)) / 2

        prot_embedding += protein
        apta_embedding += aptamer

        # Aggregate token representations
        if self.aggregation == "cls":
            prot_embed = prot_embedding[:, 0]  # query : [batch_size, hidden]
            apta_embed = apta_embedding[:, 0]  # query : [batch_size, hidden]
        elif self.aggregation == "mean_all_tok":
            prot_embed = prot_embedding.mean(1)  # query : [batch_size, hidden]
            apta_embed = apta_embedding.mean(1)  # query : [batch_size, hidden]
        elif self.aggregation == "mean":
            prot_embed = (prot_embedding * mask_prot_grouped.unsqueeze(-1)).sum(1) / mask_prot_grouped.sum(-1).unsqueeze(-1)
            apta_embed = (apta_embedding * mask_apta_grouped.unsqueeze(-1)).sum(1) / mask_apta_grouped.sum(-1).unsqueeze(-1)
        else:
            raise NotImplementedError()

        embed = torch.cat([prot_embed, apta_embed], dim=1)

        return embed, ml_pa, ml_pp, ml_aa