File size: 24,593 Bytes
dbd97ea
 
 
 
0136a5b
8863707
d4256bf
0136a5b
 
 
 
 
 
d4256bf
 
 
 
 
 
0136a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4256bf
 
 
 
 
 
 
 
0136a5b
dbd97ea
 
 
7af825c
0136a5b
 
 
 
 
7af825c
 
 
 
 
0136a5b
7af825c
 
0136a5b
 
 
 
7af825c
 
 
 
 
 
0136a5b
7af825c
dbd97ea
 
0136a5b
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
 
 
0136a5b
dbd97ea
 
0136a5b
 
 
dbd97ea
 
0136a5b
dbd97ea
 
 
0136a5b
dbd97ea
 
0136a5b
dbd97ea
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
 
7af825c
 
 
 
 
0136a5b
 
dbd97ea
 
 
 
 
 
 
 
 
0136a5b
 
dbd97ea
 
0136a5b
8863707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0136a5b
 
 
 
 
 
 
 
 
be3c6a3
0136a5b
8863707
 
 
dbd97ea
 
 
 
 
 
 
 
 
0136a5b
dbd97ea
0136a5b
dbd97ea
 
 
 
 
7af825c
 
dbd97ea
 
 
0136a5b
 
 
 
 
 
 
 
 
 
 
 
 
d4256bf
 
 
 
dbd97ea
0136a5b
d4256bf
 
 
0136a5b
 
d4256bf
 
 
0136a5b
 
dbd97ea
0136a5b
 
 
7af825c
 
d4256bf
 
 
0136a5b
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
0136a5b
dbd97ea
 
0136a5b
 
dbd97ea
 
0136a5b
36bdd78
d4256bf
36bdd78
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
36bdd78
00e2ba1
0136a5b
 
7af825c
c29f61a
36bdd78
 
 
 
 
 
0136a5b
dbd97ea
 
7af825c
36bdd78
7af825c
36bdd78
 
 
d4256bf
36bdd78
 
d4256bf
 
 
 
 
 
36bdd78
 
 
d4256bf
36bdd78
 
 
d4256bf
 
b342f89
d4256bf
b342f89
d4256bf
 
b342f89
0136a5b
36bdd78
 
b342f89
36bdd78
b342f89
36bdd78
 
23f2441
d4256bf
36bdd78
23f2441
36bdd78
b342f89
d4256bf
36bdd78
d4256bf
b342f89
36bdd78
b342f89
36bdd78
b342f89
36bdd78
 
23f2441
d4256bf
36bdd78
23f2441
36bdd78
 
dcdb545
 
d4256bf
 
 
 
dbd97ea
7af825c
dbd97ea
 
ced5a34
 
 
 
 
 
 
 
7af825c
dbd97ea
0136a5b
 
dbd97ea
 
ced5a34
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
7af825c
dbd97ea
 
 
 
0136a5b
dbd97ea
 
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
36bdd78
 
 
 
 
dbd97ea
 
36bdd78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
 
 
0136a5b
 
 
dbd97ea
 
 
 
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
 
 
022688b
 
0136a5b
022688b
0136a5b
 
 
 
 
 
 
 
 
 
dbd97ea
 
 
0136a5b
b342f89
 
 
 
022688b
 
0136a5b
dbd97ea
 
 
 
 
d4256bf
 
 
dbd97ea
 
d4256bf
8c60083
 
36bdd78
d4256bf
36bdd78
 
 
d4256bf
dbd97ea
 
 
 
36bdd78
dbd97ea
 
 
 
 
36bdd78
 
d4256bf
dbd97ea
 
36bdd78
0136a5b
 
36bdd78
d4256bf
0136a5b
dbd97ea
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
dbd97ea
 
36bdd78
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
b58e0f1
36bdd78
0136a5b
36bdd78
00e2ba1
36bdd78
 
 
b58e0f1
36bdd78
00e2ba1
36bdd78
00e2ba1
36bdd78
 
 
b58e0f1
36bdd78
 
 
00e2ba1
0136a5b
00e2ba1
36bdd78
 
 
 
 
 
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
36bdd78
 
 
 
d4256bf
 
 
 
 
 
 
 
36bdd78
 
 
 
 
d4256bf
36bdd78
 
 
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e2ba1
 
b342f89
 
 
 
 
 
 
0136a5b
8863707
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import json
import re
import random
from collections import defaultdict
from datetime import datetime, timezone
import hashlib
from typing import Dict, List

from dotenv import load_dotenv

load_dotenv()

import gradio as gr
from gen_api_answer import (
    get_model_response, 
    parse_model_response, 
    get_random_human_ai_pair,
    generate_ai_response
)
from db import add_vote, create_db_connection, get_votes
from utils import Vote
from common import (
    POLICY_CONTENT,
    ACKNOWLEDGEMENTS,
    DEFAULT_EVAL_PROMPT,
    DEFAULT_INPUT,
    DEFAULT_RESPONSE,
    CSS_STYLES,
    MAIN_TITLE,
    HOW_IT_WORKS,
    BATTLE_RULES,
    EVAL_DESCRIPTION,
    VOTING_HEADER,
)
from leaderboard import (
    get_leaderboard,
    get_leaderboard_stats,
    calculate_elo_change,
    get_model_rankings,
    DEFAULT_ELO,
    K_FACTOR
)


elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)

db = create_db_connection()
votes_collection = get_votes(db)

current_time = datetime.now()


# Load the model_data from JSONL
def load_model_data():
    model_data = {}
    try:
        with open("data/models.jsonl", "r") as f:
            for line in f:
                model = json.loads(line)
                model_data[model["name"]] = {
                    "organization": model["organization"],
                    "license": model["license"],
                    "api_model": model["api_model"],
                }
    except FileNotFoundError:
        print("Warning: models.jsonl not found")
        return {}
    return model_data


model_data = load_model_data()

def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
    vote = Vote(
        timestamp=datetime.now().isoformat(),
        prompt=prompt,
        response_a=response_a,
        response_b=response_b,
        model_a=model_a,
        model_b=model_b,
        winner=winner,
        judge_id=judge_id,
    )
    add_vote(vote, db)


def parse_variables(prompt):
    # Extract variables enclosed in double curly braces
    variables = re.findall(r"{{(.*?)}}", prompt)
    # Remove duplicates while preserving order
    seen = set()
    variables = [
        x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
    ]
    return variables


def get_final_prompt(eval_prompt, variable_values):
    # Replace variables in the eval prompt with their values
    for var, val in variable_values.items():
        eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
    return eval_prompt


def submit_prompt(eval_prompt, *variable_values):
    try:
        variables = parse_variables(eval_prompt)
        variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
        final_prompt = get_final_prompt(eval_prompt, variable_values_dict)

        models = list(model_data.keys())
        model1, model2 = random.sample(models, 2)
        model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)

        response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
        response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)

        return (
            response_a,
            response_b,
            gr.update(visible=True),
            gr.update(visible=True),
            model_a,
            model_b,
            final_prompt,
        )
    except Exception as e:
        print(f"Error in submit_prompt: {str(e)}")
        return (
            "Error generating response",
            "Error generating response",
            gr.update(visible=False),
            gr.update(visible=False),
            None,
            None,
            None,
        )


def get_ip(request: gr.Request) -> str:
    """Get and hash the IP address from the request."""
    if "cf-connecting-ip" in request.headers:
        ip = request.headers["cf-connecting-ip"]
    elif "x-forwarded-for" in request.headers:
        ip = request.headers["x-forwarded-for"]
        if "," in ip:
            ip = ip.split(",")[0]
    else:
        ip = request.client.host
    
    # Hash the IP address for privacy
    return hashlib.sha256(ip.encode()).hexdigest()[:16]


def get_vote_message(choice: str, model_a: str, model_b: str) -> str:
    """Generate appropriate message based on vote and model rankings."""
    voting_data = get_current_votes()
    leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
    rankings = get_model_rankings(leaderboard)
    pos_a = rankings.get(model_a, 0)
    pos_b = rankings.get(model_b, 0)
    
    if choice == "Tie":
        return f"It's a tie! Currently, {model_a} ranks #{pos_a} and {model_b} ranks #{pos_b}. \nYour votes shapes the leaderboard, carry on voting responsibly :)"
    
    # Get chosen and rejected models based on vote
    model_chosen = model_a if choice == "A" else model_b
    model_rejected = model_b if choice == "A" else model_a
    pos_chosen = pos_a if choice == "A" else pos_b
    pos_rejected = pos_b if choice == "A" else pos_a
    
    # Check if vote aligns with leaderboard
    if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
        return f"You're in touch with the community! {model_chosen} ranks #{pos_chosen} ahead of {model_rejected} in #{pos_rejected}. \nYour votes shapes the leaderboard, carry on voting responsibly :)"
    else:
        return f"You don't think like everyone else ;) {model_chosen} ranks #{pos_chosen} which is behind {model_rejected} in #{pos_rejected}. \nYour votes shapes the leaderboard, carry on voting responsibly :)"


def vote(
    choice,
    model_a,
    model_b,
    final_prompt,
    score_a,
    critique_a,
    score_b,
    critique_b,
    request: gr.Request,
):
    # Get hashed IP as judge_id
    judge_id = get_ip(request)
    
    # Update ELO scores based on user choice
    elo_a = elo_scores[model_a]
    elo_b = elo_scores[model_b]

    # Calculate expected scores
    Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
    Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))

    # Assign actual scores
    if choice == "A":
        Sa, Sb = 1, 0
    elif choice == "B":
        Sa, Sb = 0, 1
    else:
        Sa, Sb = 0.5, 0.5

    # Update scores and vote counts
    elo_scores[model_a] += K_FACTOR * (Sa - Ea)
    elo_scores[model_b] += K_FACTOR * (Sb - Eb)
    vote_counts[model_a] += 1
    vote_counts[model_b] += 1

    # Format the full responses with score and critique
    response_a = f"""{score_a}

{critique_a}"""

    response_b = f"""{score_b}

{critique_b}"""

    # Store the vote data with the final prompt
    store_vote_data(
        final_prompt, response_a, response_b, model_a, model_b, choice, judge_id
    )
    
    # Generate vote message
    message = get_vote_message(choice, model_a, model_b)
    
    # Return updates for UI components
    return [
        gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"),  # vote_a
        gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"),  # vote_b
        gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"),  # vote_tie
        gr.update(value=f"*Model: {model_a}*"),  # model_name_a
        gr.update(value=f"*Model: {model_b}*"),  # model_name_b
        gr.update(interactive=True, value="Regenerate judges", variant="secondary"),  # send_btn
        gr.update(value="🎲 New round", variant="primary"),  # random_btn
        gr.Info(message, title = "πŸ₯³ Thanks for your vote!"),  # success message
    ]


def get_current_votes():
    """Get current votes from database."""
    return get_votes(db)


# Update the refresh_leaderboard function
def refresh_leaderboard(show_preliminary):
    """Refresh the leaderboard data and stats."""
    voting_data = get_current_votes()
    leaderboard = get_leaderboard(model_data, voting_data, show_preliminary)
    data = [
        [
            entry["Model"],
            float(entry["ELO Score"]),
            entry["95% CI"],
            entry["# Votes"],
            entry["Organization"],
            entry["License"],
        ]
        for entry in leaderboard
    ]
    stats = get_leaderboard_stats(model_data, voting_data)
    return [gr.update(value=data), gr.update(value=stats)]


# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
    headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
    datatype=["str", "number", "str", "number", "str", "str", "str"],
)


def populate_random_example(request: gr.Request):
    """Generate a random human-AI conversation example and reset judge outputs."""
    human_msg, ai_msg = get_random_human_ai_pair()
    return [
        gr.update(value=human_msg),
        gr.update(value=ai_msg),
        gr.update(value="🎲", variant="secondary"),  # Reset random button appearance
        gr.update(value=""),  # Clear score A
        gr.update(value=""),  # Clear critique A
        gr.update(value=""),  # Clear score B
        gr.update(value=""),  # Clear critique B
        gr.update(interactive=False, variant="primary"),  # Reset vote A
        gr.update(interactive=False, variant="primary"),  # Reset vote B
        gr.update(interactive=False, variant="primary"),  # Reset vote tie
        gr.update(value="*Model: Hidden*"),  # Reset model name A
        gr.update(value="*Model: Hidden*"),  # Reset model name B
    ]


with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
    gr.Markdown(MAIN_TITLE)
    gr.Markdown(HOW_IT_WORKS)
    
    # Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
    eval_prompt = gr.Textbox(
        value=DEFAULT_EVAL_PROMPT,
        visible=False
    )

    with gr.Tabs():
        with gr.TabItem("Judge Arena"):
            with gr.Row():
                # Left side - Input section
                with gr.Column(scale=1):
                    with gr.Group():
                        human_input = gr.TextArea(
                            label="πŸ‘© Human Input",
                            lines=10,
                            placeholder="Enter the human message here..."
                        )
                        with gr.Row():
                            generate_btn = gr.Button(
                                "Generate AI Response",
                                size="sm",
                                interactive=False
                            )
                        
                        ai_response = gr.TextArea(
                            label="πŸ€– AI Response", 
                            lines=15,
                            placeholder="Enter the AI response here..."
                        )
                        
                    with gr.Row():
                        random_btn = gr.Button("🎲", scale=2)
                        send_btn = gr.Button(
                            value="Run judges",
                            variant="primary",
                            size="lg",
                            scale=8
                        )

                # Right side - Model outputs
                with gr.Column(scale=1):
                    gr.Markdown("### πŸ‘©β€βš–οΈ Judge A")
                    with gr.Group():
                        model_name_a = gr.Markdown("*Model: Hidden*")
                        with gr.Row():
                            with gr.Column(scale=1, min_width=100):  # Fixed narrow width for score
                                score_a = gr.Textbox(label="Score", lines=6, interactive=False)
                                vote_a = gr.Button("Vote A", variant="primary", interactive=False)
                            with gr.Column(scale=9, min_width=400):  # Wider width for critique
                                critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
                
                    # Tie button row
                    with gr.Row() as tie_button_row:
                        with gr.Column():
                            vote_tie = gr.Button("Tie", variant="primary", interactive=False)
                    
                
                    gr.Markdown("### πŸ§‘β€βš–οΈ Judge B")
                    with gr.Group():
                        model_name_b = gr.Markdown("*Model: Hidden*")
                        with gr.Row():
                            with gr.Column(scale=1, min_width=100):  # Fixed narrow width for score
                                score_b = gr.Textbox(label="Score", lines=6, interactive=False)
                                vote_b = gr.Button("Vote B", variant="primary", interactive=False)
                            with gr.Column(scale=9, min_width=400):  # Wider width for critique
                                critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
                    # Place Vote B button directly under Judge B
                
            gr.Markdown("<br>")

            # Add Evaluator Prompt Accordion
            with gr.Accordion("πŸ“ Evaluator Prompt", open=False):
                gr.Markdown(f"```\n{DEFAULT_EVAL_PROMPT}\n```")

            # Add spacing and acknowledgements at the bottom
            gr.Markdown(ACKNOWLEDGEMENTS)

        with gr.TabItem("Leaderboard"):
            with gr.Row():
                with gr.Column(scale=1):
                    show_preliminary = gr.Checkbox(
                        label="Reveal preliminary results",
                        value=True,  # Checked by default
                        info="Show all models, including models with less few human ratings (< 500 votes)",
                        interactive=True
                    )
            stats_display = gr.Markdown()
            leaderboard_table = gr.Dataframe(
                headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
                datatype=["str", "number", "str", "number", "str", "str", "str"],
            )

            # Add change handler for checkbox
            show_preliminary.change(
                fn=refresh_leaderboard,
                inputs=[show_preliminary],
                outputs=[leaderboard_table, stats_display]
            )

            # Update the load event
            demo.load(
                fn=refresh_leaderboard,
                inputs=[show_preliminary],
                outputs=[leaderboard_table, stats_display]
            )

        with gr.TabItem("Policy"):
            gr.Markdown(POLICY_CONTENT)

    # Define state variables for model tracking
    model_a_state = gr.State()
    model_b_state = gr.State()
    final_prompt_state = gr.State()

    # Update variable inputs based on the eval prompt
    #def update_variables(eval_prompt):
    #    variables = parse_variables(eval_prompt)
    #    updates = []

    #    for i in range(len(variable_rows)):
    #        var_row, var_input = variable_rows[i]
    #        if i < len(variables):
    #            var_name = variables[i]
    #            # Set the number of lines based on the variable name
    #            if var_name == "response":
    #                lines = 4  # Adjust this number as needed
    #            else:
    #                lines = 1  # Default to single line for other variables
    #            updates.extend(
    #                [
    #                    gr.update(visible=True),  # Show the variable row
    #                    gr.update(
    #                        label=var_name, visible=True, lines=lines
    #                    ),  # Update label and lines
    #                ]
    #            )
    #        else:
    #            updates.extend(
    #                [
    #                        gr.update(visible=False),  # Hide the variable row
    #                        gr.update(value="", visible=False),  # Clear value when hidden
    #                    ]
    #            )
    #    return updates

    #eval_prompt.change(
    #    fn=update_variables,
    #    inputs=eval_prompt,
    #    outputs=[item for sublist in variable_rows for item in sublist],
    #)

    # Regenerate button functionality
    #regenerate_button.click(
    #    fn=regenerate_prompt,
    #    inputs=[model_a_state, model_b_state, eval_prompt, human_input, ai_response],
    #    outputs=[
    #        score_a,
    #        critique_a,
    #        score_b,
    #        critique_b,
    #        vote_a,
    #        vote_b,
    #        tie_button_row,
    #        model_name_a,
    #        model_name_b,
    #        model_a_state,
    #        model_b_state,
    #    ],
    #)

    # Update model names after responses are generated
    def update_model_names(model_a, model_b):
        return gr.update(value=f"*Model: {model_a}*"), gr.update(
            value=f"*Model: {model_b}*"
        )

    # Store the last submitted prompt and variables for comparison
    last_submission = gr.State({})

    # Update the vote button click handlers
    vote_a.click(
        fn=vote,
        inputs=[
            gr.State("A"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    vote_b.click(
        fn=vote,
        inputs=[
            gr.State("B"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    vote_tie.click(
        fn=vote,
        inputs=[
            gr.State("Tie"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    # Update the send button handler to store the submitted inputs
    def submit_and_store(prompt, *variables):
        # Create a copy of the current submission
        current_submission = {"prompt": prompt, "variables": variables}

        # Get the responses
        (
            response_a,
            response_b,
            buttons_visible,
            regen_visible,
            model_a,
            model_b,
            final_prompt,
        ) = submit_prompt(prompt, *variables)

        # Parse the responses
        score_a, critique_a = parse_model_response(response_a)
        score_b, critique_b = parse_model_response(response_b)

        # Format scores with "/ 5"
        score_a = f"{score_a} / 5"
        score_b = f"{score_b} / 5"

        # Update the last_submission state with the current values
        last_submission.value = current_submission

        return (
            score_a,
            critique_a,
            score_b,
            critique_b,
            gr.update(interactive=True, variant="primary"),  # vote_a
            gr.update(interactive=True, variant="primary"),  # vote_b
            gr.update(interactive=True, variant="primary"),  # vote_tie
            model_a,
            model_b,
            final_prompt,
            gr.update(value="*Model: Hidden*"),
            gr.update(value="*Model: Hidden*"),
            gr.update(
                value="Regenerate judges",
                variant="secondary",
                interactive=True
            ),
            gr.update(value="🎲"),  # random_btn
        )

    send_btn.click(
        fn=submit_and_store,
        inputs=[eval_prompt, human_input, ai_response],
        outputs=[
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_a_state,
            model_b_state,
            final_prompt_state,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
        ],
    )

    # Update the input change handlers to also disable regenerate button
    # def handle_input_changes(prompt, *variables):
    #    """Enable send button and manage regenerate button based on input changes"""
    #    last_inputs = last_submission.value
    #    current_inputs = {"prompt": prompt, "variables": variables}
    #    inputs_changed = last_inputs != current_inputs
    #    return [
    #        gr.update(interactive=True),  # send button always enabled
    #        gr.update(
    #            interactive=not inputs_changed
    #        ),  # regenerate button disabled if inputs changed
    #    ]

    # Update the change handlers for prompt and variables
    #eval_prompt.change(
    #    fn=handle_input_changes,
    #    inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
    #    outputs=[send_btn, regenerate_button],
    #)

    # for _, var_input in variable_rows:
    #    var_input.change(
    #        fn=handle_input_changes,
    #        inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
    #        outputs=[send_btn, regenerate_button],
    #    )

    # Add click handlers for metric buttons
    #outputs_list = [eval_prompt] + [var_input for _, var_input in variable_rows]

    #custom_btn.click(fn=lambda: set_example_metric("Custom"), outputs=outputs_list)

    #hallucination_btn.click(
    #    fn=lambda: set_example_metric("Hallucination"), outputs=outputs_list
    #)

    #precision_btn.click(fn=lambda: set_example_metric("Precision"), outputs=outputs_list)

    #recall_btn.click(fn=lambda: set_example_metric("Recall"), outputs=outputs_list)

    #coherence_btn.click(
    #    fn=lambda: set_example_metric("Logical_Coherence"), outputs=outputs_list
    #)

    #faithfulness_btn.click(
    #    fn=lambda: set_example_metric("Faithfulness"), outputs=outputs_list
    #)

    # Set default metric at startup
    demo.load(
        #fn=lambda: set_example_metric("Hallucination"),
        #outputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
    )

    # Add random button handler
    random_btn.click(
        fn=populate_random_example,
        inputs=[],
        outputs=[
            human_input, 
            ai_response,
            random_btn,
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
        ]
    )

    # Add new input change handlers
    def handle_input_change():
        """Reset UI state when inputs are changed"""
        return [
            gr.update(interactive=False),  # vote_a
            gr.update(interactive=False),  # vote_b
            gr.update(interactive=False),  # vote_tie
            gr.update(value="Run judges", variant="primary"),  # send_btn
            gr.update(value="🎲", variant="secondary"),  # random_btn
        ]

    # Update the change handlers for inputs
    human_input.change(
        fn=handle_input_change,
        inputs=[],
        outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
    )

    ai_response.change(
        fn=handle_input_change,
        inputs=[],
        outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
    )

    generate_btn.click(
        fn=lambda msg: (
            generate_ai_response(msg)[0],  # Only take the response text
            gr.update(
                value="Generate AI Response",  # Keep the label
                interactive=False  # Disable the button
            )
        ),
        inputs=[human_input],
        outputs=[ai_response, generate_btn]
    )

    human_input.change(
        fn=lambda x: gr.update(interactive=bool(x.strip())),
        inputs=[human_input],
        outputs=[generate_btn]
    )

    # Update the demo.load to include the random example population
    demo.load(
        fn=populate_random_example,
        inputs=[],
        outputs=[human_input, ai_response]
    )

if __name__ == "__main__":
    demo.launch()