Spaces:
Sleeping
Sleeping
File size: 2,162 Bytes
1db187e 6144ebf ed8f946 6144ebf 1db187e a0155bf c7c0038 a0155bf 26db9ca afc8b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
title: Insights
emoji: 📈
colorFrom: gray
colorTo: yellow
sdk: streamlit
sdk_version: 1.33.0
app_file: app.py
pinned: false
---
# Insights
## Deployment
[HuggingFace](https://huggingface.co/spaces/AtharvaThakur/Insights)
## Modules
- `DataLoader`: Handles the loading of data either by uploading a CSV file or inputting a URL to a CSV file.
- `DataAnalyzer`: Provides summary statistics and data types of the loaded dataset.
- `DataFilter`: Allows users to filter rows based on user-defined conditions.
- `DataTransformer`: Enables users to perform operations on columns.
- `DataVisualizer`: Visualizes data with various types of plots (Histogram, Box Plot, Pie Chart, Scatter Plot, Heatmap).
## Features
- Upload CSV files or load data from a URL.
- Display the uploaded dataset.
- Show summary statistics and data types.
- Filter rows based on user-defined conditions.
- Perform operations on columns.
- Visualize data with various types of plots (Histogram, Box Plot, Pie Chart, Scatter Plot, Heatmap).
- Transform data.
## Detailed Installation Instructions
1. Install the required packages:
The project's dependencies are listed in the 'requirements.txt' file. You can install all of them using pip:
```
pip install -r requirements.txt
```
2. Run the application:
Now, you're ready to run the application. Use the following command to start the Streamlit server:
```
streamlit run app.py
```
## Web app
1. Main page
Data Exploration
-> Data Loader
-> DataQA (LLM with python interpreter/CSV agent)
-> Data Analyzer
-> Data Filter
-> Data Visualizer
2. Data Transformation
-> handling null values
-> creating new columns
-> removing columns
-> Changing datatypes
-> give option to analyse the transformed dataset or save it.
3. Natural language dataparty (Pure LLM)
-> Insights generation
-> Automating the data analysis/transformation
-> generating a report
# Running using Docker
1. Build the docker image using
```
docker build -t insights .
```
2. Run the Docker container with
```
docker run -p 8501:8501 -e GOOGLE_API_KEY=<you-api-key> insights
```
|