File size: 6,599 Bytes
fe6327d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import glob
import os
import cv2
import argparse
import shutil
import math
from PIL import Image
import numpy as np
def resize_images(src_img_folder, dst_img_folder, max_resolution="512x512", divisible_by=2, interpolation=None, save_as_png=False, copy_associated_files=False):
# Split the max_resolution string by "," and strip any whitespaces
max_resolutions = [res.strip() for res in max_resolution.split(',')]
# # Calculate max_pixels from max_resolution string
# max_pixels = int(max_resolution.split("x")[0]) * int(max_resolution.split("x")[1])
# Create destination folder if it does not exist
if not os.path.exists(dst_img_folder):
os.makedirs(dst_img_folder)
# Select interpolation method
if interpolation == 'lanczos4':
cv2_interpolation = cv2.INTER_LANCZOS4
elif interpolation == 'cubic':
cv2_interpolation = cv2.INTER_CUBIC
else:
cv2_interpolation = cv2.INTER_AREA
# Iterate through all files in src_img_folder
img_exts = (".png", ".jpg", ".jpeg", ".webp", ".bmp") # copy from train_util.py
for filename in os.listdir(src_img_folder):
# Check if the image is png, jpg or webp etc...
if not filename.endswith(img_exts):
# Copy the file to the destination folder if not png, jpg or webp etc (.txt or .caption or etc.)
shutil.copy(os.path.join(src_img_folder, filename), os.path.join(dst_img_folder, filename))
continue
# Load image
image = Image.open(os.path.join(src_img_folder, filename))
if not image.mode == "RGB":
image = image.convert("RGB")
img = np.array(image, np.uint8)
base, _ = os.path.splitext(filename)
for max_resolution in max_resolutions:
# Calculate max_pixels from max_resolution string
max_pixels = int(max_resolution.split("x")[0]) * int(max_resolution.split("x")[1])
# Calculate current number of pixels
current_pixels = img.shape[0] * img.shape[1]
# Calculate current resolution
current_resolution = (img.shape[0], img.shape[1])
# Calculate target resolution
target_resolution = (int(max_resolution.split("x")[0]), int(max_resolution.split("x")[1]))
# Skip to the next image if the current resolution is less than the target resolution
if current_resolution[0] < target_resolution[0] or current_resolution[1] < target_resolution[1]:
print(f"Skipped image: {filename} as its resolution is smaller than target resolution")
continue
# Check if the image needs resizing
if current_pixels > max_pixels:
# Calculate scaling factor
scale_factor = max_pixels / current_pixels
# Calculate new dimensions
new_height = int(img.shape[0] * math.sqrt(scale_factor))
new_width = int(img.shape[1] * math.sqrt(scale_factor))
# Resize image
img = cv2.resize(img, (new_width, new_height), interpolation=cv2_interpolation)
else:
new_height, new_width = img.shape[0:2]
# Calculate the new height and width that are divisible by divisible_by (with/without resizing)
new_height = new_height if new_height % divisible_by == 0 else new_height - new_height % divisible_by
new_width = new_width if new_width % divisible_by == 0 else new_width - new_width % divisible_by
# Center crop the image to the calculated dimensions
y = int((img.shape[0] - new_height) / 2)
x = int((img.shape[1] - new_width) / 2)
img = img[y:y + new_height, x:x + new_width]
# Split filename into base and extension
new_filename = base + '+' + max_resolution + ('.png' if save_as_png else '.jpg')
# Save resized image in dst_img_folder
# cv2.imwrite(os.path.join(dst_img_folder, new_filename), img, [cv2.IMWRITE_JPEG_QUALITY, 100])
image = Image.fromarray(img)
image.save(os.path.join(dst_img_folder, new_filename), quality=100)
proc = "Resized" if current_pixels > max_pixels else "Saved"
print(f"{proc} image: {filename} with size {img.shape[0]}x{img.shape[1]} as {new_filename}")
# If other files with same basename, copy them with resolution suffix
if copy_associated_files:
asoc_files = glob.glob(os.path.join(src_img_folder, base + ".*"))
for asoc_file in asoc_files:
ext = os.path.splitext(asoc_file)[1]
if ext in img_exts:
continue
for max_resolution in max_resolutions:
new_asoc_file = base + '+' + max_resolution + ext
print(f"Copy {asoc_file} as {new_asoc_file}")
shutil.copy(os.path.join(src_img_folder, asoc_file), os.path.join(dst_img_folder, new_asoc_file))
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
description='Resize images in a folder to a specified max resolution(s) / 指定されたフォルダ内の画像を指定した最大画像サイズ(面積)以下にアスペクト比を維持したままリサイズします')
parser.add_argument('src_img_folder', type=str, help='Source folder containing the images / 元画像のフォルダ')
parser.add_argument('dst_img_folder', type=str, help='Destination folder to save the resized images / リサイズ後の画像を保存するフォルダ')
parser.add_argument('--max_resolution', type=str,
help='Maximum resolution(s) in the format "512x512,384x384, etc, etc" / 最大画像サイズをカンマ区切りで指定 ("512x512,384x384, etc, etc" など)', default="512x512,384x384,256x256,128x128")
parser.add_argument('--divisible_by', type=int,
help='Ensure new dimensions are divisible by this value / リサイズ後の画像のサイズをこの値で割り切れるようにします', default=1)
parser.add_argument('--interpolation', type=str, choices=['area', 'cubic', 'lanczos4'],
default='area', help='Interpolation method for resizing / リサイズ時の補完方法')
parser.add_argument('--save_as_png', action='store_true', help='Save as png format / png形式で保存')
parser.add_argument('--copy_associated_files', action='store_true',
help='Copy files with same base name to images (captions etc) / 画像と同じファイル名(拡張子を除く)のファイルもコピーする')
return parser
def main():
parser = setup_parser()
args = parser.parse_args()
resize_images(args.src_img_folder, args.dst_img_folder, args.max_resolution,
args.divisible_by, args.interpolation, args.save_as_png, args.copy_associated_files)
if __name__ == '__main__':
main()
|