File size: 58,072 Bytes
fe6327d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
# v1: initial release
# v2: add open and save folder icons
# v3: Add new Utilities tab for Dreambooth folder preparation
# v3.1: Adding captionning of images to utilities

import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import argparse
from datetime import datetime
from library.common_gui import (
    get_file_path,
    get_any_file_path,
    get_saveasfile_path,
    color_aug_changed,
    save_inference_file,
    run_cmd_advanced_training,
    run_cmd_training,
    update_my_data,
    check_if_model_exist,
    output_message,
    verify_image_folder_pattern,
    SaveConfigFile,
    save_to_file
)
from library.class_configuration_file import ConfigurationFile
from library.class_source_model import SourceModel
from library.class_basic_training import BasicTraining
from library.class_advanced_training import AdvancedTraining
from library.class_sdxl_parameters import SDXLParameters
from library.class_folders import Folders
from library.tensorboard_gui import (
    gradio_tensorboard,
    start_tensorboard,
    stop_tensorboard,
)
from library.utilities import utilities_tab
from library.class_sample_images import SampleImages, run_cmd_sample
from library.class_lora_tab import LoRATools

from library.custom_logging import setup_logging

# Set up logging
log = setup_logging()

document_symbol = '\U0001F4C4'   # 📄


def save_configuration(
    save_as,
    file_path,
    pretrained_model_name_or_path,
    v2,
    v_parameterization,
    sdxl,
    logging_dir,
    train_data_dir,
    reg_data_dir,
    output_dir,
    max_resolution,
    learning_rate,
    lr_scheduler,
    lr_warmup,
    train_batch_size,
    epoch,
    save_every_n_epochs,
    mixed_precision,
    save_precision,
    seed,
    num_cpu_threads_per_process,
    cache_latents,
    cache_latents_to_disk,
    caption_extension,
    enable_bucket,
    gradient_checkpointing,
    full_fp16,
    no_token_padding,
    stop_text_encoder_training,
    # use_8bit_adam,
    xformers,
    save_model_as,
    shuffle_caption,
    save_state,
    resume,
    prior_loss_weight,
    text_encoder_lr,
    unet_lr,
    network_dim,
    lora_network_weights,
    dim_from_weights,
    color_aug,
    flip_aug,
    clip_skip,
    gradient_accumulation_steps,
    mem_eff_attn,
    output_name,
    model_list,
    max_token_length,
    max_train_epochs,
    max_data_loader_n_workers,
    network_alpha,
    training_comment,
    keep_tokens,
    lr_scheduler_num_cycles,
    lr_scheduler_power,
    persistent_data_loader_workers,
    bucket_no_upscale,
    random_crop,
    bucket_reso_steps,
    caption_dropout_every_n_epochs,
    caption_dropout_rate,
    optimizer,
    optimizer_args,
    noise_offset_type,
    noise_offset,
    adaptive_noise_scale,
    multires_noise_iterations,
    multires_noise_discount,
    LoRA_type,
    factor,
    use_cp,
    decompose_both,
    train_on_input,
    conv_dim,
    conv_alpha,
    sample_every_n_steps,
    sample_every_n_epochs,
    sample_sampler,
    sample_prompts,
    additional_parameters,
    vae_batch_size,
    min_snr_gamma,
    down_lr_weight,
    mid_lr_weight,
    up_lr_weight,
    block_lr_zero_threshold,
    block_dims,
    block_alphas,
    conv_dims,
    conv_alphas,
    weighted_captions,
    unit,
    save_every_n_steps,
    save_last_n_steps,
    save_last_n_steps_state,
    use_wandb,
    wandb_api_key,
    scale_v_pred_loss_like_noise_pred,
    scale_weight_norms,
    network_dropout,
    rank_dropout,
    module_dropout,
    sdxl_cache_text_encoder_outputs,
    sdxl_no_half_vae,
    min_timestep,
    max_timestep,
):
    # Get list of function parameters and values
    parameters = list(locals().items())

    original_file_path = file_path

    save_as_bool = True if save_as.get('label') == 'True' else False

    if save_as_bool:
        log.info('Save as...')
        file_path = get_saveasfile_path(file_path)
    else:
        log.info('Save...')
        if file_path == None or file_path == '':
            file_path = get_saveasfile_path(file_path)

    # log.info(file_path)

    if file_path == None or file_path == '':
        return original_file_path  # In case a file_path was provided and the user decide to cancel the open action

    # Extract the destination directory from the file path
    destination_directory = os.path.dirname(file_path)

    # Create the destination directory if it doesn't exist
    if not os.path.exists(destination_directory):
        os.makedirs(destination_directory)

    SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as'])

    return file_path


def open_configuration(
    ask_for_file,
    apply_preset,
    file_path,
    pretrained_model_name_or_path,
    v2,
    v_parameterization,
    sdxl,
    logging_dir,
    train_data_dir,
    reg_data_dir,
    output_dir,
    max_resolution,
    learning_rate,
    lr_scheduler,
    lr_warmup,
    train_batch_size,
    epoch,
    save_every_n_epochs,
    mixed_precision,
    save_precision,
    seed,
    num_cpu_threads_per_process,
    cache_latents,
    cache_latents_to_disk,
    caption_extension,
    enable_bucket,
    gradient_checkpointing,
    full_fp16,
    no_token_padding,
    stop_text_encoder_training,
    # use_8bit_adam,
    xformers,
    save_model_as,
    shuffle_caption,
    save_state,
    resume,
    prior_loss_weight,
    text_encoder_lr,
    unet_lr,
    network_dim,
    lora_network_weights,
    dim_from_weights,
    color_aug,
    flip_aug,
    clip_skip,
    gradient_accumulation_steps,
    mem_eff_attn,
    output_name,
    model_list,
    max_token_length,
    max_train_epochs,
    max_data_loader_n_workers,
    network_alpha,
    training_comment,
    keep_tokens,
    lr_scheduler_num_cycles,
    lr_scheduler_power,
    persistent_data_loader_workers,
    bucket_no_upscale,
    random_crop,
    bucket_reso_steps,
    caption_dropout_every_n_epochs,
    caption_dropout_rate,
    optimizer,
    optimizer_args,
    noise_offset_type,
    noise_offset,
    adaptive_noise_scale,
    multires_noise_iterations,
    multires_noise_discount,
    LoRA_type,
    factor,
    use_cp,
    decompose_both,
    train_on_input,
    conv_dim,
    conv_alpha,
    sample_every_n_steps,
    sample_every_n_epochs,
    sample_sampler,
    sample_prompts,
    additional_parameters,
    vae_batch_size,
    min_snr_gamma,
    down_lr_weight,
    mid_lr_weight,
    up_lr_weight,
    block_lr_zero_threshold,
    block_dims,
    block_alphas,
    conv_dims,
    conv_alphas,
    weighted_captions,
    unit,
    save_every_n_steps,
    save_last_n_steps,
    save_last_n_steps_state,
    use_wandb,
    wandb_api_key,
    scale_v_pred_loss_like_noise_pred,
    scale_weight_norms,
    network_dropout,
    rank_dropout,
    module_dropout,
    sdxl_cache_text_encoder_outputs,
    sdxl_no_half_vae,
    min_timestep,
    max_timestep,
    training_preset,
):
    # Get list of function parameters and values
    parameters = list(locals().items())

    ask_for_file = True if ask_for_file.get('label') == 'True' else False
    apply_preset = True if apply_preset.get('label') == 'True' else False

    # Check if we are "applying" a preset or a config
    if apply_preset:
        log.info(f'Applying preset {training_preset}...')
        file_path = f'./presets/lora/{training_preset}.json'
    else:
        # If not applying a preset, set the `training_preset` field to an empty string
        # Find the index of the `training_preset` parameter using the `index()` method
        training_preset_index = parameters.index(
            ('training_preset', training_preset)
        )

        # Update the value of `training_preset` by directly assigning an empty string value
        parameters[training_preset_index] = ('training_preset', '')

    original_file_path = file_path

    if ask_for_file:
        file_path = get_file_path(file_path)

    if not file_path == '' and not file_path == None:
        # Load variables from JSON file
        with open(file_path, 'r') as f:
            my_data = json.load(f)
            log.info('Loading config...')

            # Update values to fix deprecated options, set appropriate optimizer if it is set to True, etc.
            my_data = update_my_data(my_data)
    else:
        file_path = original_file_path  # In case a file_path was provided and the user decides to cancel the open action
        my_data = {}

    values = [file_path]
    for key, value in parameters:
        # Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
        if not key in ['ask_for_file', 'apply_preset', 'file_path']:
            json_value = my_data.get(key)
            # if isinstance(json_value, str) and json_value == '':
            #     # If the JSON value is an empty string, use the default value
            #     values.append(value)
            # else:
            # Otherwise, use the JSON value if not None, otherwise use the default value
            values.append(json_value if json_value is not None else value)

    # This next section is about making the LoCon parameters visible if LoRA_type = 'Standard'
    if my_data.get('LoRA_type', 'Standard') == 'LoCon':
        values.append(gr.Row.update(visible=True))
    else:
        values.append(gr.Row.update(visible=False))

    return tuple(values)


def train_model(
    headless,
    print_only,
    pretrained_model_name_or_path,
    v2,
    v_parameterization,
    sdxl,
    logging_dir,
    train_data_dir,
    reg_data_dir,
    output_dir,
    max_resolution,
    learning_rate,
    lr_scheduler,
    lr_warmup,
    train_batch_size,
    epoch,
    save_every_n_epochs,
    mixed_precision,
    save_precision,
    seed,
    num_cpu_threads_per_process,
    cache_latents,
    cache_latents_to_disk,
    caption_extension,
    enable_bucket,
    gradient_checkpointing,
    full_fp16,
    no_token_padding,
    stop_text_encoder_training_pct,
    # use_8bit_adam,
    xformers,
    save_model_as,
    shuffle_caption,
    save_state,
    resume,
    prior_loss_weight,
    text_encoder_lr,
    unet_lr,
    network_dim,
    lora_network_weights,
    dim_from_weights,
    color_aug,
    flip_aug,
    clip_skip,
    gradient_accumulation_steps,
    mem_eff_attn,
    output_name,
    model_list,  # Keep this. Yes, it is unused here but required given the common list used
    max_token_length,
    max_train_epochs,
    max_data_loader_n_workers,
    network_alpha,
    training_comment,
    keep_tokens,
    lr_scheduler_num_cycles,
    lr_scheduler_power,
    persistent_data_loader_workers,
    bucket_no_upscale,
    random_crop,
    bucket_reso_steps,
    caption_dropout_every_n_epochs,
    caption_dropout_rate,
    optimizer,
    optimizer_args,
    noise_offset_type,
    noise_offset,
    adaptive_noise_scale,
    multires_noise_iterations,
    multires_noise_discount,
    LoRA_type,
    factor,
    use_cp,
    decompose_both,
    train_on_input,
    conv_dim,
    conv_alpha,
    sample_every_n_steps,
    sample_every_n_epochs,
    sample_sampler,
    sample_prompts,
    additional_parameters,
    vae_batch_size,
    min_snr_gamma,
    down_lr_weight,
    mid_lr_weight,
    up_lr_weight,
    block_lr_zero_threshold,
    block_dims,
    block_alphas,
    conv_dims,
    conv_alphas,
    weighted_captions,
    unit,
    save_every_n_steps,
    save_last_n_steps,
    save_last_n_steps_state,
    use_wandb,
    wandb_api_key,
    scale_v_pred_loss_like_noise_pred,
    scale_weight_norms,
    network_dropout,
    rank_dropout,
    module_dropout,
    sdxl_cache_text_encoder_outputs,
    sdxl_no_half_vae,
    min_timestep,
    max_timestep,
):
    # Get list of function parameters and values
    parameters = list(locals().items())
    
    print_only_bool = True if print_only.get('label') == 'True' else False
    log.info(f'Start training LoRA {LoRA_type} ...')
    headless_bool = True if headless.get('label') == 'True' else False

    if pretrained_model_name_or_path == '':
        output_message(
            msg='Source model information is missing', headless=headless_bool
        )
        return

    if train_data_dir == '':
        output_message(
            msg='Image folder path is missing', headless=headless_bool
        )
        return

    if not os.path.exists(train_data_dir):
        output_message(
            msg='Image folder does not exist', headless=headless_bool
        )
        return

    if not verify_image_folder_pattern(train_data_dir):
        return

    if reg_data_dir != '':
        if not os.path.exists(reg_data_dir):
            output_message(
                msg='Regularisation folder does not exist',
                headless=headless_bool,
            )
            return

        if not verify_image_folder_pattern(reg_data_dir):
            return

    if output_dir == '':
        output_message(
            msg='Output folder path is missing', headless=headless_bool
        )
        return

    if int(bucket_reso_steps) < 1:
        output_message(
            msg='Bucket resolution steps need to be greater than 0',
            headless=headless_bool,
        )
        return

    if noise_offset == '':
        noise_offset = 0

    if float(noise_offset) > 1 or float(noise_offset) < 0:
        output_message(
            msg='Noise offset need to be a value between 0 and 1',
            headless=headless_bool,
        )
        return

    # if float(noise_offset) > 0 and (
    #     multires_noise_iterations > 0 or multires_noise_discount > 0
    # ):
    #     output_message(
    #         msg="noise offset and multires_noise can't be set at the same time. Only use one or the other.",
    #         title='Error',
    #         headless=headless_bool,
    #     )
    #     return

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    if stop_text_encoder_training_pct > 0:
        output_message(
            msg='Output "stop text encoder training" is not yet supported. Ignoring',
            headless=headless_bool,
        )
        stop_text_encoder_training_pct = 0

    if check_if_model_exist(
        output_name, output_dir, save_model_as, headless=headless_bool
    ):
        return

    # if optimizer == 'Adafactor' and lr_warmup != '0':
    #     output_message(
    #         msg="Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.",
    #         title='Warning',
    #         headless=headless_bool,
    #     )
    #     lr_warmup = '0'

    # If string is empty set string to 0.
    if text_encoder_lr == '':
        text_encoder_lr = 0
    if unet_lr == '':
        unet_lr = 0

    # Get a list of all subfolders in train_data_dir
    subfolders = [
        f
        for f in os.listdir(train_data_dir)
        if os.path.isdir(os.path.join(train_data_dir, f))
    ]

    total_steps = 0

    # Loop through each subfolder and extract the number of repeats
    for folder in subfolders:
        try:
            # Extract the number of repeats from the folder name
            repeats = int(folder.split('_')[0])

            # Count the number of images in the folder
            num_images = len(
                [
                    f
                    for f, lower_f in (
                        (file, file.lower())
                        for file in os.listdir(
                            os.path.join(train_data_dir, folder)
                        )
                    )
                    if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
                ]
            )

            log.info(f'Folder {folder}: {num_images} images found')

            # Calculate the total number of steps for this folder
            steps = repeats * num_images

            # log.info the result
            log.info(f'Folder {folder}: {steps} steps')

            total_steps += steps

        except ValueError:
            # Handle the case where the folder name does not contain an underscore
            log.info(
                f"Error: '{folder}' does not contain an underscore, skipping..."
            )

    if reg_data_dir == '':
        reg_factor = 1
    else:
        log.info(
            '\033[94mRegularisation images are used... Will double the number of steps required...\033[0m'
        )
        reg_factor = 2

    log.info(f'Total steps: {total_steps}')
    log.info(f'Train batch size: {train_batch_size}')
    log.info(f'Gradient accumulation steps: {gradient_accumulation_steps}')
    log.info(f'Epoch: {epoch}')
    log.info(f'Regulatization factor: {reg_factor}')

    # calculate max_train_steps
    max_train_steps = int(
        math.ceil(
            float(total_steps)
            / int(train_batch_size)
            / int(gradient_accumulation_steps)
            * int(epoch)
            * int(reg_factor)
        )
    )
    log.info(
        f'max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}'
    )

    # calculate stop encoder training
    if stop_text_encoder_training_pct == None:
        stop_text_encoder_training = 0
    else:
        stop_text_encoder_training = math.ceil(
            float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
        )
    log.info(f'stop_text_encoder_training = {stop_text_encoder_training}')

    lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
    log.info(f'lr_warmup_steps = {lr_warmup_steps}')

    run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process}'
    if sdxl:
        run_cmd += f' "./sdxl_train_network.py"'
    else:
        run_cmd += f' "./train_network.py"'

    if v2:
        run_cmd += ' --v2'
    if v_parameterization:
        run_cmd += ' --v_parameterization'
    if enable_bucket:
        run_cmd += ' --enable_bucket'
    if no_token_padding:
        run_cmd += ' --no_token_padding'
    if weighted_captions:
        run_cmd += ' --weighted_captions'
    run_cmd += (
        f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
    )
    run_cmd += f' --train_data_dir="{train_data_dir}"'
    if len(reg_data_dir):
        run_cmd += f' --reg_data_dir="{reg_data_dir}"'
    run_cmd += f' --resolution="{max_resolution}"'
    run_cmd += f' --output_dir="{output_dir}"'
    if not logging_dir == '':
        run_cmd += f' --logging_dir="{logging_dir}"'
    run_cmd += f' --network_alpha="{network_alpha}"'
    if not training_comment == '':
        run_cmd += f' --training_comment="{training_comment}"'
    if not stop_text_encoder_training == 0:
        run_cmd += (
            f' --stop_text_encoder_training={stop_text_encoder_training}'
        )
    if not save_model_as == 'same as source model':
        run_cmd += f' --save_model_as={save_model_as}'
    if not float(prior_loss_weight) == 1.0:
        run_cmd += f' --prior_loss_weight={prior_loss_weight}'

    if LoRA_type == 'LoCon' or LoRA_type == 'LyCORIS/LoCon':
        try:
            import lycoris
        except ModuleNotFoundError:
            log.info(
                "\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
            )
            return
        run_cmd += f' --network_module=lycoris.kohya'
        run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "algo=lora"'

    if LoRA_type == 'LyCORIS/LoHa':
        try:
            import lycoris
        except ModuleNotFoundError:
            log.info(
                "\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
            )
            return
        run_cmd += f' --network_module=lycoris.kohya'
        run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "use_cp={use_cp}" "algo=loha"'
        # This is a hack to fix a train_network LoHA logic issue
        if not network_dropout > 0.0:
            run_cmd += f' --network_dropout="{network_dropout}"'

    if LoRA_type == 'LyCORIS/iA3':
        try:
            import lycoris
        except ModuleNotFoundError:
            log.info(
                "\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
            )
            return
        run_cmd += f' --network_module=lycoris.kohya'
        run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "train_on_input={train_on_input}" "algo=ia3"'
        # This is a hack to fix a train_network LoHA logic issue
        if not network_dropout > 0.0:
            run_cmd += f' --network_dropout="{network_dropout}"'

    if LoRA_type == 'LyCORIS/DyLoRA':
        try:
            import lycoris
        except ModuleNotFoundError:
            log.info(
                "\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
            )
            return
        run_cmd += f' --network_module=lycoris.kohya'
        run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "use_cp={use_cp}" "block_size={unit}" "algo=dylora"'
        # This is a hack to fix a train_network LoHA logic issue
        if not network_dropout > 0.0:
            run_cmd += f' --network_dropout="{network_dropout}"'

    if LoRA_type == 'LyCORIS/LoKr':
        try:
            import lycoris
        except ModuleNotFoundError:
            log.info(
                "\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
            )
            return
        run_cmd += f' --network_module=lycoris.kohya'
        run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "factor={factor}" "use_cp={use_cp}" "algo=lokr"'
        # This is a hack to fix a train_network LoHA logic issue
        if not network_dropout > 0.0:
            run_cmd += f' --network_dropout="{network_dropout}"'

    if LoRA_type in ['Kohya LoCon', 'Standard']:
        kohya_lora_var_list = [
            'down_lr_weight',
            'mid_lr_weight',
            'up_lr_weight',
            'block_lr_zero_threshold',
            'block_dims',
            'block_alphas',
            'conv_dims',
            'conv_alphas',
            'rank_dropout',
            'module_dropout',
        ]

        run_cmd += f' --network_module=networks.lora'
        kohya_lora_vars = {
            key: value
            for key, value in vars().items()
            if key in kohya_lora_var_list and value
        }

        network_args = ''
        if LoRA_type == 'Kohya LoCon':
            network_args += f' conv_dim="{conv_dim}" conv_alpha="{conv_alpha}"'

        for key, value in kohya_lora_vars.items():
            if value:
                network_args += f' {key}="{value}"'

        if network_args:
            run_cmd += f' --network_args{network_args}'

    if LoRA_type in ['Kohya DyLoRA']:
        kohya_lora_var_list = [
            'conv_dim',
            'conv_alpha',
            'down_lr_weight',
            'mid_lr_weight',
            'up_lr_weight',
            'block_lr_zero_threshold',
            'block_dims',
            'block_alphas',
            'conv_dims',
            'conv_alphas',
            'rank_dropout',
            'module_dropout',
            'unit',
        ]

        run_cmd += f' --network_module=networks.dylora'
        kohya_lora_vars = {
            key: value
            for key, value in vars().items()
            if key in kohya_lora_var_list and value
        }

        network_args = ''

        for key, value in kohya_lora_vars.items():
            if value:
                network_args += f' {key}="{value}"'

        if network_args:
            run_cmd += f' --network_args{network_args}'

    if not (float(text_encoder_lr) == 0) or not (float(unet_lr) == 0):
        if not (float(text_encoder_lr) == 0) and not (float(unet_lr) == 0):
            run_cmd += f' --text_encoder_lr={text_encoder_lr}'
            run_cmd += f' --unet_lr={unet_lr}'
        elif not (float(text_encoder_lr) == 0):
            run_cmd += f' --text_encoder_lr={text_encoder_lr}'
            run_cmd += f' --network_train_text_encoder_only'
        else:
            run_cmd += f' --unet_lr={unet_lr}'
            run_cmd += f' --network_train_unet_only'
    else:
        if float(learning_rate) == 0:
            output_message(
                msg='Please input learning rate values.',
                headless=headless_bool,
            )
            return

    run_cmd += f' --network_dim={network_dim}'

    #if LoRA_type not in ['LyCORIS/LoCon']:
    if not lora_network_weights == '':
        run_cmd += f' --network_weights="{lora_network_weights}"'
        if dim_from_weights:
            run_cmd += f' --dim_from_weights'

    if int(gradient_accumulation_steps) > 1:
        run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
    if not output_name == '':
        run_cmd += f' --output_name="{output_name}"'
    if not lr_scheduler_num_cycles == '':
        run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
    else:
        run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
    if not lr_scheduler_power == '':
        run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'

    if scale_weight_norms > 0.0:
        run_cmd += f' --scale_weight_norms="{scale_weight_norms}"'

    if network_dropout > 0.0:
        run_cmd += f' --network_dropout="{network_dropout}"'
        
    if sdxl_cache_text_encoder_outputs:
        run_cmd += f' --cache_text_encoder_outputs'
        
    if sdxl_no_half_vae:
        run_cmd += f' --no_half_vae'

    run_cmd += run_cmd_training(
        learning_rate=learning_rate,
        lr_scheduler=lr_scheduler,
        lr_warmup_steps=lr_warmup_steps,
        train_batch_size=train_batch_size,
        max_train_steps=max_train_steps,
        save_every_n_epochs=save_every_n_epochs,
        mixed_precision=mixed_precision,
        save_precision=save_precision,
        seed=seed,
        caption_extension=caption_extension,
        cache_latents=cache_latents,
        cache_latents_to_disk=cache_latents_to_disk,
        optimizer=optimizer,
        optimizer_args=optimizer_args,
    )

    run_cmd += run_cmd_advanced_training(
        max_train_epochs=max_train_epochs,
        max_data_loader_n_workers=max_data_loader_n_workers,
        max_token_length=max_token_length,
        resume=resume,
        save_state=save_state,
        mem_eff_attn=mem_eff_attn,
        clip_skip=clip_skip,
        flip_aug=flip_aug,
        color_aug=color_aug,
        shuffle_caption=shuffle_caption,
        gradient_checkpointing=gradient_checkpointing,
        full_fp16=full_fp16,
        xformers=xformers,
        # use_8bit_adam=use_8bit_adam,
        keep_tokens=keep_tokens,
        persistent_data_loader_workers=persistent_data_loader_workers,
        bucket_no_upscale=bucket_no_upscale,
        random_crop=random_crop,
        bucket_reso_steps=bucket_reso_steps,
        caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
        caption_dropout_rate=caption_dropout_rate,
        noise_offset_type=noise_offset_type,
        noise_offset=noise_offset,
        adaptive_noise_scale=adaptive_noise_scale,
        multires_noise_iterations=multires_noise_iterations,
        multires_noise_discount=multires_noise_discount,
        additional_parameters=additional_parameters,
        vae_batch_size=vae_batch_size,
        min_snr_gamma=min_snr_gamma,
        save_every_n_steps=save_every_n_steps,
        save_last_n_steps=save_last_n_steps,
        save_last_n_steps_state=save_last_n_steps_state,
        use_wandb=use_wandb,
        wandb_api_key=wandb_api_key,
        scale_v_pred_loss_like_noise_pred=scale_v_pred_loss_like_noise_pred,
        min_timestep=min_timestep,
        max_timestep=max_timestep,
    )

    run_cmd += run_cmd_sample(
        sample_every_n_steps,
        sample_every_n_epochs,
        sample_sampler,
        sample_prompts,
        output_dir,
    )

    if print_only_bool:
        log.warning(
            'Here is the trainer command as a reference. It will not be executed:\n'
        )
        print(run_cmd)
        
        save_to_file(run_cmd)
    else:
        # Saving config file for model
        current_datetime = datetime.now()
        formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
        file_path = os.path.join(output_dir, f'{output_name}_{formatted_datetime}.json')
        
        log.info(f'Saving training config to {file_path}...')

        SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as', 'headless', 'print_only'])
        
        log.info(run_cmd)
        # Run the command
        if os.name == 'posix':
            os.system(run_cmd)
        else:
            subprocess.run(run_cmd)

        # check if output_dir/last is a folder... therefore it is a diffuser model
        last_dir = pathlib.Path(f'{output_dir}/{output_name}')

        if not last_dir.is_dir():
            # Copy inference model for v2 if required
            save_inference_file(
                output_dir, v2, v_parameterization, output_name
            )


def lora_tab(
    train_data_dir_input=gr.Textbox(),
    reg_data_dir_input=gr.Textbox(),
    output_dir_input=gr.Textbox(),
    logging_dir_input=gr.Textbox(),
    headless=False,
):
    dummy_db_true = gr.Label(value=True, visible=False)
    dummy_db_false = gr.Label(value=False, visible=False)
    dummy_headless = gr.Label(value=headless, visible=False)

    with gr.Tab('Training'):
        gr.Markdown(
            'Train a custom model using kohya train network LoRA python code...'
        )
        
        # Setup Configuration Files Gradio
        config = ConfigurationFile(headless)

        source_model = SourceModel(
            save_model_as_choices=[
                'ckpt',
                'safetensors',
            ],
            headless=headless,
        )

        with gr.Tab('Folders'):
            folders = Folders(headless=headless)
            
        with gr.Tab('Parameters'):

            def list_presets(path):
                json_files = []
                
                for file in os.listdir(path):
                    if file.endswith('.json'):
                        json_files.append(os.path.splitext(file)[0])
                        
                user_presets_path = os.path.join(path, 'user_presets')
                if os.path.isdir(user_presets_path):
                    for file in os.listdir(user_presets_path):
                        if file.endswith('.json'):
                            preset_name = os.path.splitext(file)[0]
                            json_files.append(os.path.join('user_presets', preset_name))
                
                return json_files
            
            training_preset = gr.Dropdown(
                label='Presets',
                choices=list_presets('./presets/lora'),
                elem_id='myDropdown',
            )
            with gr.Row():
                LoRA_type = gr.Dropdown(
                    label='LoRA type',
                    choices=[
                        'Kohya DyLoRA',
                        'Kohya LoCon',
                        'LyCORIS/DyLoRA',
                        'LyCORIS/iA3',
                        'LyCORIS/LoCon',
                        'LyCORIS/LoHa',
                        'LyCORIS/LoKr',
                        'Standard',
                    ],
                    value='Standard',
                )
                with gr.Box():
                    with gr.Row():
                        lora_network_weights = gr.Textbox(
                            label='LoRA network weights',
                            placeholder='(Optional)',
                            info='Path to an existing LoRA network weights to resume training from',
                        )
                        lora_network_weights_file = gr.Button(
                            document_symbol,
                            elem_id='open_folder_small',
                            visible=(not headless),
                        )
                        lora_network_weights_file.click(
                            get_any_file_path,
                            inputs=[lora_network_weights],
                            outputs=lora_network_weights,
                            show_progress=False,
                        )
                        dim_from_weights = gr.Checkbox(
                            label='DIM from weights',
                            value=False,
                            info='Automatically determine the dim(rank) from the weight file.',
                        )
            basic_training = BasicTraining(
                learning_rate_value='0.0001',
                lr_scheduler_value='cosine',
                lr_warmup_value='10',
            )

            with gr.Row():
                text_encoder_lr = gr.Number(
                    label='Text Encoder learning rate',
                    value='5e-5',
                    info='Optional',
                )
                unet_lr = gr.Number(
                    label='Unet learning rate',
                    value='0.0001',
                    info='Optional',
                )
                
            # Add SDXL Parameters
            sdxl_params = SDXLParameters(source_model.sdxl_checkbox)
                
            with gr.Row():
                factor = gr.Slider(
                    label='LoKr factor',
                    value=-1,
                    minimum=-1,
                    maximum=64,
                    step=1,
                    visible=False,
                )
                use_cp = gr.Checkbox(
                    value=False,
                    label='Use CP decomposition',
                    info='A two-step approach utilizing tensor decomposition and fine-tuning to accelerate convolution layers in large neural networks, resulting in significant CPU speedups with minor accuracy drops.',
                    visible=False,
                )
                decompose_both = gr.Checkbox(
                    value=False,
                    label='LoKr decompose both',
                    visible=False,
                )
                train_on_input = gr.Checkbox(
                    value=False,
                    label='iA3 train on input',
                    visible=False,
                )

            with gr.Row() as LoRA_dim_alpha:
                network_dim = gr.Slider(
                    minimum=1,
                    maximum=1024,
                    label='Network Rank (Dimension)',
                    value=8,
                    step=1,
                    interactive=True,
                )
                network_alpha = gr.Slider(
                    minimum=0.1,
                    maximum=20000,
                    label='Network Alpha',
                    value=1,
                    step=0.1,
                    interactive=True,
                    info='alpha for LoRA weight scaling',
                )
            with gr.Row(visible=False) as LoCon_row:

                # locon= gr.Checkbox(label='Train a LoCon instead of a general LoRA (does not support v2 base models) (may not be able to some utilities now)', value=False)
                conv_dim = gr.Slider(
                    minimum=0,
                    maximum=512,
                    value=1,
                    step=1,
                    label='Convolution Rank (Dimension)',
                )
                conv_alpha = gr.Slider(
                    minimum=0,
                    maximum=512,
                    value=1,
                    step=1,
                    label='Convolution Alpha',
                )
            with gr.Row():
                scale_weight_norms = gr.Slider(
                    label='Scale weight norms',
                    value=0,
                    minimum=0,
                    maximum=1,
                    step=0.01,
                    info='Max Norm Regularization is a technique to stabilize network training by limiting the norm of network weights. It may be effective in suppressing overfitting of LoRA and improving stability when used with other LoRAs. See PR #545 on kohya_ss/sd_scripts repo for details.',
                    interactive=True,
                )
                network_dropout = gr.Slider(
                    label='Network dropout',
                    value=0,
                    minimum=0,
                    maximum=1,
                    step=0.01,
                    info='Is a normal probability dropout at the neuron level. In the case of LoRA, it is applied to the output of down. Recommended range 0.1 to 0.5',
                )
                rank_dropout = gr.Slider(
                    label='Rank dropout',
                    value=0,
                    minimum=0,
                    maximum=1,
                    step=0.01,
                    info='can specify `rank_dropout` to dropout each rank with specified probability. Recommended range 0.1 to 0.3',
                )
                module_dropout = gr.Slider(
                    label='Module dropout',
                    value=0.0,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    info='can specify `module_dropout` to dropout each rank with specified probability. Recommended range 0.1 to 0.3',
                )
            with gr.Row(visible=False) as kohya_dylora:
                unit = gr.Slider(
                    minimum=1,
                    maximum=64,
                    label='DyLoRA Unit / Block size',
                    value=1,
                    step=1,
                    interactive=True,
                )

                # Show or hide LoCon conv settings depending on LoRA type selection
                def update_LoRA_settings(LoRA_type):
                    log.info('LoRA type changed...')

                    visibility_and_gr_types = {
                        'LoRA_dim_alpha': (
                            {
                                'Kohya DyLoRA',
                                'Kohya LoCon',
                                'LyCORIS/DyLoRA',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoKr',
                                'Standard',
                            },
                            gr.Row,
                        ),
                        'LoCon_row': (
                            {
                                'LoCon',
                                'Kohya DyLoRA',
                                'Kohya LoCon',
                                'LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoKr',
                                'LyCORIS/LoCon',
                            },
                            gr.Row,
                        ),
                        'kohya_advanced_lora': (
                            {'Standard', 'Kohya DyLoRA', 'Kohya LoCon'},
                            gr.Row,
                        ),
                        'kohya_dylora': (
                            {'Kohya DyLoRA', 'LyCORIS/DyLoRA'},
                            gr.Row,
                        ),
                        'lora_network_weights': (
                            {'Standard', 'LoCon', 'Kohya DyLoRA', 'Kohya LoCon','LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',},
                            gr.Textbox,
                        ),
                        'lora_network_weights_file': (
                            {'Standard', 'LoCon', 'Kohya DyLoRA', 'Kohya LoCon','LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',},
                            gr.Button,
                        ),
                        'dim_from_weights': (
                            {'Standard', 'LoCon', 'Kohya DyLoRA', 'Kohya LoCon','LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',},
                            gr.Checkbox,
                        ),
                        'factor': ({'LyCORIS/LoKr'}, gr.Slider),
                        'use_cp': (
                            {
                                'LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',
                            },
                            gr.Checkbox,
                        ),
                        'decompose_both': ({'LyCORIS/LoKr'}, gr.Checkbox),
                        'train_on_input': ({'LyCORIS/iA3'}, gr.Checkbox),
                        'scale_weight_norms': (
                            {
                                'LoCon',
                                'Kohya DyLoRA',
                                'Kohya LoCon',
                                'LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',
                                'Standard',
                            },
                            gr.Slider,
                        ),
                        'network_dropout': (
                            {
                                'LoCon',
                                'Kohya DyLoRA',
                                'Kohya LoCon',
                                'LyCORIS/DyLoRA',
                                'LyCORIS/LoHa',
                                'LyCORIS/LoCon',
                                'LyCORIS/LoKr',
                                'Standard',
                            },
                            gr.Slider,
                        ),
                        'rank_dropout': (
                            {'LoCon', 'Kohya DyLoRA', 'Kohya LoCon',
                                'Standard',},
                            gr.Slider,
                        ),
                        'module_dropout': (
                            {'LoCon', 'Kohya DyLoRA', 'Kohya LoCon',
                                'Standard',},
                            gr.Slider,
                        ),
                    }

                    results = []
                    for attr, (
                        visibility,
                        gr_type,
                    ) in visibility_and_gr_types.items():
                        visible = LoRA_type in visibility
                        results.append(gr_type.update(visible=visible))

                    return tuple(results)

            with gr.Accordion('Advanced Configuration', open=False):
                with gr.Row(visible=True) as kohya_advanced_lora:
                    with gr.Tab(label='Weights'):
                        with gr.Row(visible=True):
                            down_lr_weight = gr.Textbox(
                                label='Down LR weights',
                                placeholder='(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1',
                                info='Specify the learning rate weight of the down blocks of U-Net.',
                            )
                            mid_lr_weight = gr.Textbox(
                                label='Mid LR weights',
                                placeholder='(Optional) eg: 0.5',
                                info='Specify the learning rate weight of the mid block of U-Net.',
                            )
                            up_lr_weight = gr.Textbox(
                                label='Up LR weights',
                                placeholder='(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1',
                                info='Specify the learning rate weight of the up blocks of U-Net. The same as down_lr_weight.',
                            )
                            block_lr_zero_threshold = gr.Textbox(
                                label='Blocks LR zero threshold',
                                placeholder='(Optional) eg: 0.1',
                                info='If the weight is not more than this value, the LoRA module is not created. The default is 0.',
                            )
                    with gr.Tab(label='Blocks'):
                        with gr.Row(visible=True):
                            block_dims = gr.Textbox(
                                label='Block dims',
                                placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
                                info='Specify the dim (rank) of each block. Specify 25 numbers.',
                            )
                            block_alphas = gr.Textbox(
                                label='Block alphas',
                                placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
                                info='Specify the alpha of each block. Specify 25 numbers as with block_dims. If omitted, the value of network_alpha is used.',
                            )
                    with gr.Tab(label='Conv'):
                        with gr.Row(visible=True):
                            conv_dims = gr.Textbox(
                                label='Conv dims',
                                placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
                                info='Expand LoRA to Conv2d 3x3 and specify the dim (rank) of each block. Specify 25 numbers.',
                            )
                            conv_alphas = gr.Textbox(
                                label='Conv alphas',
                                placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
                                info='Specify the alpha of each block when expanding LoRA to Conv2d 3x3. Specify 25 numbers. If omitted, the value of conv_alpha is used.',
                            )
                advanced_training = AdvancedTraining(headless=headless)
                advanced_training.color_aug.change(
                    color_aug_changed,
                    inputs=[advanced_training.color_aug],
                    outputs=[basic_training.cache_latents],
                )

            sample = SampleImages()

            LoRA_type.change(
                update_LoRA_settings,
                inputs=[LoRA_type],
                outputs=[
                    LoRA_dim_alpha,
                    LoCon_row,
                    kohya_advanced_lora,
                    kohya_dylora,
                    lora_network_weights,
                    lora_network_weights_file,
                    dim_from_weights,
                    factor,
                    use_cp,
                    decompose_both,
                    train_on_input,
                    scale_weight_norms,
                    network_dropout,
                    rank_dropout,
                    module_dropout,
                ],
            )

        button_run = gr.Button('Train model', variant='primary')

        button_print = gr.Button('Print training command')

        # Setup gradio tensorboard buttons
        button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard()

        button_start_tensorboard.click(
            start_tensorboard,
            inputs=folders.logging_dir,
            show_progress=False,
        )

        button_stop_tensorboard.click(
            stop_tensorboard,
            show_progress=False,
        )

        settings_list = [
            source_model.pretrained_model_name_or_path,
            source_model.v2,
            source_model.v_parameterization,
            source_model.sdxl_checkbox,
            folders.logging_dir,
            folders.train_data_dir,
            folders.reg_data_dir,
            folders.output_dir,
            basic_training.max_resolution,
            basic_training.learning_rate,
            basic_training.lr_scheduler,
            basic_training.lr_warmup,
            basic_training.train_batch_size,
            basic_training.epoch,
            basic_training.save_every_n_epochs,
            basic_training.mixed_precision,
            basic_training.save_precision,
            basic_training.seed,
            basic_training.num_cpu_threads_per_process,
            basic_training.cache_latents,
            basic_training.cache_latents_to_disk,
            basic_training.caption_extension,
            basic_training.enable_bucket,
            advanced_training.gradient_checkpointing,
            advanced_training.full_fp16,
            advanced_training.no_token_padding,
            basic_training.stop_text_encoder_training,
            advanced_training.xformers,
            source_model.save_model_as,
            advanced_training.shuffle_caption,
            advanced_training.save_state,
            advanced_training.resume,
            advanced_training.prior_loss_weight,
            text_encoder_lr,
            unet_lr,
            network_dim,
            lora_network_weights,
            dim_from_weights,
            advanced_training.color_aug,
            advanced_training.flip_aug,
            advanced_training.clip_skip,
            advanced_training.gradient_accumulation_steps,
            advanced_training.mem_eff_attn,
            folders.output_name,
            source_model.model_list,
            advanced_training.max_token_length,
            advanced_training.max_train_epochs,
            advanced_training.max_data_loader_n_workers,
            network_alpha,
            folders.training_comment,
            advanced_training.keep_tokens,
            advanced_training.lr_scheduler_num_cycles,
            advanced_training.lr_scheduler_power,
            advanced_training.persistent_data_loader_workers,
            advanced_training.bucket_no_upscale,
            advanced_training.random_crop,
            advanced_training.bucket_reso_steps,
            advanced_training.caption_dropout_every_n_epochs,
            advanced_training.caption_dropout_rate,
            basic_training.optimizer,
            basic_training.optimizer_args,
            advanced_training.noise_offset_type,
            advanced_training.noise_offset,
            advanced_training.adaptive_noise_scale,
            advanced_training.multires_noise_iterations,
            advanced_training.multires_noise_discount,
            LoRA_type,
            factor,
            use_cp,
            decompose_both,
            train_on_input,
            conv_dim,
            conv_alpha,
            sample.sample_every_n_steps,
            sample.sample_every_n_epochs,
            sample.sample_sampler,
            sample.sample_prompts,
            advanced_training.additional_parameters,
            advanced_training.vae_batch_size,
            advanced_training.min_snr_gamma,
            down_lr_weight,
            mid_lr_weight,
            up_lr_weight,
            block_lr_zero_threshold,
            block_dims,
            block_alphas,
            conv_dims,
            conv_alphas,
            advanced_training.weighted_captions,
            unit,
            advanced_training.save_every_n_steps,
            advanced_training.save_last_n_steps,
            advanced_training.save_last_n_steps_state,
            advanced_training.use_wandb,
            advanced_training.wandb_api_key,
            advanced_training.scale_v_pred_loss_like_noise_pred,
            scale_weight_norms,
            network_dropout,
            rank_dropout,
            module_dropout,
            sdxl_params.sdxl_cache_text_encoder_outputs,
            sdxl_params.sdxl_no_half_vae,
            advanced_training.min_timestep,
            advanced_training.max_timestep,
        ]

        config.button_open_config.click(
            open_configuration,
            inputs=[dummy_db_true, dummy_db_false, config.config_file_name]
            + settings_list
            + [training_preset],
            outputs=[config.config_file_name]
            + settings_list
            + [training_preset, LoCon_row],
            show_progress=False,
        )

        config.button_load_config.click(
            open_configuration,
            inputs=[dummy_db_false, dummy_db_false, config.config_file_name]
            + settings_list
            + [training_preset],
            outputs=[config.config_file_name]
            + settings_list
            + [training_preset, LoCon_row],
            show_progress=False,
        )

        training_preset.input(
            open_configuration,
            inputs=[dummy_db_false, dummy_db_true, config.config_file_name]
            + settings_list
            + [training_preset],
            outputs=[gr.Textbox()] + settings_list + [training_preset, LoCon_row],
            show_progress=False,
        )

        config.button_save_config.click(
            save_configuration,
            inputs=[dummy_db_false, config.config_file_name] + settings_list,
            outputs=[config.config_file_name],
            show_progress=False,
        )

        config.button_save_as_config.click(
            save_configuration,
            inputs=[dummy_db_true, config.config_file_name] + settings_list,
            outputs=[config.config_file_name],
            show_progress=False,
        )

        button_run.click(
            train_model,
            inputs=[dummy_headless] + [dummy_db_false] + settings_list,
            show_progress=False,
        )

        button_print.click(
            train_model,
            inputs=[dummy_headless] + [dummy_db_true] + settings_list,
            show_progress=False,
        )
        
    with gr.Tab('Tools'):
        lora_tools = LoRATools(folders=folders, headless=headless)
        
    with gr.Tab('Guides'):
        gr.Markdown(
            'This section provide Various LoRA guides and information...'
        )
        if os.path.exists('./docs/LoRA/top_level.md'):
            with open(os.path.join('./docs/LoRA/top_level.md'), 'r', encoding='utf8') as file:
                guides_top_level = file.read() + '\n'
        gr.Markdown(guides_top_level)

    return (
        folders.train_data_dir,
        folders.reg_data_dir,
        folders.output_dir,
        folders.logging_dir,
    )


def UI(**kwargs):
    css = ''

    headless = kwargs.get('headless', False)
    log.info(f'headless: {headless}')

    if os.path.exists('./style.css'):
        with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
            log.info('Load CSS...')
            css += file.read() + '\n'

    interface = gr.Blocks(
        css=css, title='Kohya_ss GUI', theme=gr.themes.Default()
    )

    with interface:
        with gr.Tab('LoRA'):
            (
                train_data_dir_input,
                reg_data_dir_input,
                output_dir_input,
                logging_dir_input,
            ) = lora_tab(headless=headless)
        with gr.Tab('Utilities'):
            utilities_tab(
                train_data_dir_input=train_data_dir_input,
                reg_data_dir_input=reg_data_dir_input,
                output_dir_input=output_dir_input,
                logging_dir_input=logging_dir_input,
                enable_copy_info_button=True,
                headless=headless,
            )

    # Show the interface
    launch_kwargs = {}
    username = kwargs.get('username')
    password = kwargs.get('password')
    server_port = kwargs.get('server_port', 0)
    inbrowser = kwargs.get('inbrowser', False)
    share = kwargs.get('share', False)
    server_name = kwargs.get('listen')

    launch_kwargs['server_name'] = server_name
    if username and password:
        launch_kwargs['auth'] = (username, password)
    if server_port > 0:
        launch_kwargs['server_port'] = server_port
    if inbrowser:
        launch_kwargs['inbrowser'] = inbrowser
    if share:
        launch_kwargs['share'] = share
    log.info(launch_kwargs)
    interface.launch(**launch_kwargs)


if __name__ == '__main__':
    # torch.cuda.set_per_process_memory_fraction(0.48)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )
    parser.add_argument(
        '--headless', action='store_true', help='Is the server headless'
    )

    args = parser.parse_args()

    UI(
        username=args.username,
        password=args.password,
        inbrowser=args.inbrowser,
        server_port=args.server_port,
        share=args.share,
        listen=args.listen,
        headless=args.headless,
    )