File size: 47,860 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that performs several consistency checks on the repo. This includes:
- checking all models are properly defined in the __init__ of models/
- checking all models are in the main __init__
- checking all models are properly tested
- checking all object in the main __init__ are documented
- checking all models are in at least one auto class
- checking all the auto mapping are properly defined (no typos, importable)
- checking the list of deprecated models is up to date

Use from the root of the repo with (as used in `make repo-consistency`):

```bash
python utils/check_repo.py
```

It has no auto-fix mode.
"""
import inspect
import os
import re
import sys
import types
import warnings
from collections import OrderedDict
from difflib import get_close_matches
from pathlib import Path
from typing import List, Tuple

from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.models.auto import get_values
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/en"

# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "AltRobertaModel",
    "DPRSpanPredictor",
    "UdopStack",
    "LongT5Stack",
    "RealmBertModel",
    "T5Stack",
    "MT5Stack",
    "UMT5Stack",
    "Pop2PianoStack",
    "SwitchTransformersStack",
    "TFDPRSpanPredictor",
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
    "Kosmos2TextModel",
    "Kosmos2TextForCausalLM",
    "Kosmos2VisionModel",
    "SeamlessM4Tv2TextToUnitModel",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2TextToUnitForConditionalGeneration",
]

# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
    # models to ignore for not tested
    "RecurrentGemmaModel",  # Building part of bigger (tested) model.
    "FuyuForCausalLM",  # Not tested fort now
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
    "UMT5EncoderModel",  # Building part of bigger (tested) model.
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
    "ErnieMForInformationExtraction",
    "FastSpeech2ConformerHifiGan",  # Already tested by SpeechT5HifiGan (# Copied from)
    "FastSpeech2ConformerWithHifiGan",  # Built with two smaller (tested) models.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
    "MgpstrModel",  # Building part of bigger (tested) model.
    "BertLMHeadModel",  # Needs to be setup as decoder.
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
    "SeparableConv1D",  # Building part of bigger (tested) model.
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
    "OPTDecoderWrapper",
    "TFSegformerDecodeHead",  # Not a regular model.
    "AltRobertaModel",  # Building part of bigger (tested) model.
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BarkCausalModel",  # Building part of bigger (tested) model.
    "BarkModel",  # Does not have a forward signature - generation tested with integration tests.
    "SeamlessM4TTextToUnitModel",  # Building part of bigger (tested) model.
    "SeamlessM4TCodeHifiGan",  # Building part of bigger (tested) model.
    "SeamlessM4TTextToUnitForConditionalGeneration",  # Building part of bigger (tested) model.
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/bark/test_modeling_bark.py",
]

# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
    # models to ignore for model xxx mapping
    "AlignTextModel",
    "AlignVisionModel",
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
    "ErnieMForInformationExtraction",
    "FastSpeech2ConformerHifiGan",
    "FastSpeech2ConformerWithHifiGan",
    "GitVisionModel",
    "GraphormerModel",
    "GraphormerForGraphClassification",
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
    "BrosSpadeEEForTokenClassification",
    "BrosSpadeELForTokenClassification",
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
    "Swin2SRForImageSuperResolution",
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
    "BridgeTowerForContrastiveLearning",
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
    "EsmForProteinFolding",
    "GPTSanJapaneseModel",
    "TimeSeriesTransformerForPrediction",
    "InformerForPrediction",
    "AutoformerForPrediction",
    "PatchTSTForPretraining",
    "PatchTSTForPrediction",
    "JukeboxVQVAE",
    "JukeboxPrior",
    "SamModel",
    "DPTForDepthEstimation",
    "DecisionTransformerGPT2Model",
    "GLPNForDepthEstimation",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForTokenClassification",
    "ViltForMaskedLM",
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
    "SegformerDecodeHead",
    "TFSegformerDecodeHead",
    "FlaxBeitForMaskedImageModeling",
    "BeitForMaskedImageModeling",
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
    "CLIPTextModel",
    "CLIPTextModelWithProjection",
    "CLIPVisionModelWithProjection",
    "ClvpForCausalLM",
    "ClvpModel",
    "GroupViTTextModel",
    "GroupViTVisionModel",
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
    "FlaxCLIPTextModel",
    "FlaxCLIPTextModelWithProjection",
    "FlaxCLIPVisionModel",
    "FlaxWav2Vec2ForCTC",
    "DetrForSegmentation",
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
    "ConditionalDetrForSegmentation",
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
    "GPT2DoubleHeadsModel",
    "GPTSw3DoubleHeadsModel",
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
    "LayoutLMForQuestionAnswering",
    "LukeForMaskedLM",
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
    "MgpstrModel",
    "OpenAIGPTDoubleHeadsModel",
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "Owlv2TextModel",
    "Owlv2VisionModel",
    "OwlViTForObjectDetection",
    "PatchTSMixerForPrediction",
    "PatchTSMixerForPretraining",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
    "TFDPRReader",
    "TFGPT2DoubleHeadsModel",
    "TFLayoutLMForQuestionAnswering",
    "TFOpenAIGPTDoubleHeadsModel",
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
    "Wav2Vec2ForCTC",
    "HubertForCTC",
    "SEWForCTC",
    "SEWDForCTC",
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
    "SeparableConv1D",
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
    "TFWav2Vec2ForCTC",
    "TFHubertForCTC",
    "XCLIPVisionModel",
    "XCLIPTextModel",
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
    "TvltForAudioVisualClassification",
    "BarkCausalModel",
    "BarkCoarseModel",
    "BarkFineModel",
    "BarkSemanticModel",
    "MusicgenMelodyModel",
    "MusicgenModel",
    "MusicgenForConditionalGeneration",
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
    "VitMatteForImageMatting",
    "SeamlessM4TTextToUnitModel",
    "SeamlessM4TTextToUnitForConditionalGeneration",
    "SeamlessM4TCodeHifiGan",
    "SeamlessM4TForSpeechToSpeech",  # no auto class for speech-to-speech
    "TvpForVideoGrounding",
    "UdopForConditionalGeneration",
    "SeamlessM4Tv2NARTextToUnitModel",
    "SeamlessM4Tv2NARTextToUnitForConditionalGeneration",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2ForSpeechToSpeech",  # no auto class for speech-to-speech
    "SegGptForImageSegmentation",
    "SiglipVisionModel",
    "SiglipTextModel",
]

# DO NOT edit this list!
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
    "FlaxBertLayer",
    "FlaxBigBirdLayer",
    "FlaxRoFormerLayer",
    "TFBertLayer",
    "TFLxmertEncoder",
    "TFLxmertXLayer",
    "TFMPNetLayer",
    "TFMobileBertLayer",
    "TFSegformerLayer",
    "TFViTMAELayer",
]

# Update this list for models that have multiple model types for the same model doc.
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
        ("data2vec-vision", "data2vec"),
        ("donut-swin", "donut"),
    ]
)


# This is to make sure the transformers module imported is the one in the repo.
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)


def check_missing_backends():
    """
    Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
    that's not the case but only throw a warning for users running this.
    """
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


def check_model_list():
    """
    Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
    """
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        if model == "deprecated":
            continue
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models in the submodule `transformers.models`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(set(_models).difference(models))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules() -> List[str]:
    """Get all the model modules inside the transformers library (except deprecated models)."""
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
        "modeling_flax_auto",
        "modeling_flax_encoder_decoder",
        "modeling_flax_utils",
        "modeling_speech_encoder_decoder",
        "modeling_flax_speech_encoder_decoder",
        "modeling_flax_vision_encoder_decoder",
        "modeling_timm_backbone",
        "modeling_tf_auto",
        "modeling_tf_encoder_decoder",
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_vision_encoder_decoder",
        "modeling_vision_encoder_decoder",
    ]
    modules = []
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if model == "deprecated" or model.startswith("__"):
            continue

        model_module = getattr(transformers.models, model)
        for submodule in dir(model_module):
            if submodule.startswith("modeling") and submodule not in _ignore_modules:
                modeling_module = getattr(model_module, submodule)
                if inspect.ismodule(modeling_module):
                    modules.append(modeling_module)
    return modules


def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
    """
    Get the objects in a module that are models.

    Args:
        module (`types.ModuleType`):
            The module from which we are extracting models.
        include_pretrained (`bool`, *optional*, defaults to `False`):
            Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.

    Returns:
        List[Tuple[str, type]]: List of models as tuples (class name, actual class).
    """
    models = []
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
    for attr_name in dir(module):
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


def is_building_block(model: str) -> bool:
    """
    Returns `True` if a model is a building block part of a bigger model.
    """
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    if model.endswith("Prenet"):
        return True


def is_a_private_model(model: str) -> bool:
    """Returns `True` if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True
    return is_building_block(model)


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files() -> List[str]:
    """
    Get the model test files.

    Returns:
        `List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
        defined in this script). They will be considered as paths relative to `tests`. A caller has to use
        `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
        "test_modeling_flax_encoder_decoder",
        "test_modeling_flax_speech_encoder_decoder",
        "test_modeling_marian",
        "test_modeling_tf_common",
        "test_modeling_tf_encoder_decoder",
    ]
    test_files = []
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file: str) -> List[str]:
    """
    Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
    the common test class.

    Args:
        test_file (`str`): The path to the test file to check

    Returns:
        `List[str]`: The list of models tested in that file.
    """
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
        content = f.read()
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
    if len(all_models) > 0:
        model_tested = []
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
        return model_tested


def should_be_tested(model_name: str) -> bool:
    """
    Whether or not a model should be tested.
    """
    if model_name in IGNORE_NON_TESTED:
        return False
    return not is_building_block(model_name)


def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
    """Check models defined in a module are all tested in a given file.

    Args:
        module (`types.ModuleType`): The module in which we get the models.
        test_file (`str`): The path to the file where the module is tested.

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
    # XxxPreTrainedModel are not tested
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and should_be_tested(model_name):
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
    """Check all models are properly tested."""
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
        # Matches a module to its test file.
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def get_all_auto_configured_models() -> List[str]:
    """Return the list of all models in at least one auto class."""
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
    return list(result)


def ignore_unautoclassed(model_name: str) -> bool:
    """Rules to determine if a model should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
    """
    Check models defined in module are each in an auto class.

    Args:
        module (`types.ModuleType`):
            The module in which we get the models.
        all_auto_models (`List[str]`):
            The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
    """Check all models are each in an auto class."""
    # This is where we need to check we have all backends or the check is incomplete.
    check_missing_backends()
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
    # This is where we need to check we have all backends or the check is incomplete.
    check_missing_backends()

    failures = []
    mappings_to_check = {
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
        for _, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        if name.endswith("MODEL_FOR_IMAGE_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
    # This is where we need to check we have all backends or the check is incomplete.
    check_missing_backends()

    failures = []
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
    mappings_to_check = {
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
        for model_type in mapping:
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_all_auto_mappings_importable():
    """Check all auto mappings can be imported."""
    # This is where we need to check we have all backends or the check is incomplete.
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name in mappings_to_check:
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
            failures.append(f"`{name}`")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_objects_being_equally_in_main_init():
    """
    Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
    """
    attrs = dir(transformers)

    failures = []
    for attr in attrs:
        obj = getattr(transformers, attr)
        if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
            continue

        module_path = obj.__module__
        module_name = module_path.split(".")[-1]
        module_dir = ".".join(module_path.split(".")[:-1])
        if (
            module_name.startswith("modeling_")
            and not module_name.startswith("modeling_tf_")
            and not module_name.startswith("modeling_flax_")
        ):
            parent_module = sys.modules[module_dir]

            frameworks = []
            if is_tf_available():
                frameworks.append("TF")
            if is_flax_available():
                frameworks.append("Flax")

            for framework in frameworks:
                other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
                if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
                    other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
                    other_module = getattr(parent_module, other_module_name)
                    if hasattr(other_module, f"{framework}{attr}"):
                        if not hasattr(transformers, f"{framework}{attr}"):
                            if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}{attr}")
                    if hasattr(other_module, f"{framework}_{attr}"):
                        if not hasattr(transformers, f"{framework}_{attr}"):
                            if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}_{attr}")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename: str) -> List[int]:
    """
    Check that in a given test file, the slow decorator is always last.

    Args:
        filename (`str`): The path to a test file to check.

    Returns:
        `List[int]`: The list of failures as a list of indices where there are problems.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
    """Check that in all test files, the slow decorator is always last."""
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
        )


def find_all_documented_objects() -> List[str]:
    """
    Parse the content of all doc files to detect which classes and functions it documents.

    Returns:
        `List[str]`: The list of all object names being documented.
    """
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
    "BartPretrainedModel",
    "DataCollator",
    "DataCollatorForSOP",
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "NerPipeline",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
    "TFBartPretrainedModel",
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
    "Wav2Vec2ForMaskedLM",
    "Wav2Vec2Tokenizer",
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
    "TFTrainingArguments",
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
    "CharacterTokenizer",  # Internal, should never have been in the main init.
    "DPRPretrainedReader",  # Like an Encoder.
    "DummyObject",  # Just picked by mistake sometimes.
    "MecabTokenizer",  # Internal, should never have been in the main init.
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
    "requires_backends",  # Internal function
    "AltRobertaModel",  # Internal module
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
    "AutoBackbone",
    "BeitBackbone",
    "BitBackbone",
    "ConvNextBackbone",
    "ConvNextV2Backbone",
    "DinatBackbone",
    "Dinov2Backbone",
    "FocalNetBackbone",
    "MaskFormerSwinBackbone",
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
    "NatBackbone",
    "PvtV2Backbone",
    "ResNetBackbone",
    "SwinBackbone",
    "Swinv2Backbone",
    "TimmBackbone",
    "TimmBackboneConfig",
    "VitDetBackbone",
]


def ignore_undocumented(name: str) -> bool:
    """Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
    """Check all models are properly documented."""
    documented_objs = find_all_documented_objects()
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
    check_docstrings_are_in_md()
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring: str) -> True:
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are written in md and nor rst."""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, encoding="utf-8") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )


def check_deprecated_constant_is_up_to_date():
    """
    Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
    """
    deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
    deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]

    constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
    message = []
    missing_models = sorted(set(deprecated_models) - set(constant_to_check))
    if len(missing_models) != 0:
        missing_models = ", ".join(missing_models)
        message.append(
            "The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
            f"`models/auto/configuration_auto.py`: {missing_models}."
        )

    extra_models = sorted(set(constant_to_check) - set(deprecated_models))
    if len(extra_models) != 0:
        extra_models = ", ".join(extra_models)
        message.append(
            "The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
            f"remove them from the constant or move to the deprecated folder: {extra_models}."
        )

    if len(message) > 0:
        raise Exception("\n".join(message))


def check_repo_quality():
    """Check all models are properly tested and documented."""
    print("Checking all models are included.")
    check_model_list()
    print("Checking all models are public.")
    check_models_are_in_init()
    print("Checking all models are properly tested.")
    check_all_decorator_order()
    check_all_models_are_tested()
    print("Checking all objects are properly documented.")
    check_all_objects_are_documented()
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
    print("Checking all objects are equally (across frameworks) in the main __init__.")
    check_objects_being_equally_in_main_init()
    print("Checking the DEPRECATED_MODELS constant is up to date.")
    check_deprecated_constant_is_up_to_date()


if __name__ == "__main__":
    check_repo_quality()