File size: 12,836 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path

from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError

from transformers import AutoConfig, BertConfig, GPT2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig  # noqa E402


config_common_kwargs = {
    "return_dict": False,
    "output_hidden_states": True,
    "output_attentions": True,
    "torchscript": True,
    "torch_dtype": "float16",
    "use_bfloat16": True,
    "tf_legacy_loss": True,
    "pruned_heads": {"a": 1},
    "tie_word_embeddings": False,
    "is_decoder": True,
    "cross_attention_hidden_size": 128,
    "add_cross_attention": True,
    "tie_encoder_decoder": True,
    "max_length": 50,
    "min_length": 3,
    "do_sample": True,
    "early_stopping": True,
    "num_beams": 3,
    "num_beam_groups": 3,
    "diversity_penalty": 0.5,
    "temperature": 2.0,
    "top_k": 10,
    "top_p": 0.7,
    "typical_p": 0.2,
    "repetition_penalty": 0.8,
    "length_penalty": 0.8,
    "no_repeat_ngram_size": 5,
    "encoder_no_repeat_ngram_size": 5,
    "bad_words_ids": [1, 2, 3],
    "num_return_sequences": 3,
    "chunk_size_feed_forward": 5,
    "output_scores": True,
    "return_dict_in_generate": True,
    "forced_bos_token_id": 2,
    "forced_eos_token_id": 3,
    "remove_invalid_values": True,
    "architectures": ["BertModel"],
    "finetuning_task": "translation",
    "id2label": {0: "label"},
    "label2id": {"label": "0"},
    "tokenizer_class": "BertTokenizerFast",
    "prefix": "prefix",
    "bos_token_id": 6,
    "pad_token_id": 7,
    "eos_token_id": 8,
    "sep_token_id": 9,
    "decoder_start_token_id": 10,
    "exponential_decay_length_penalty": (5, 1.01),
    "suppress_tokens": [0, 1],
    "begin_suppress_tokens": 2,
    "task_specific_params": {"translation": "some_params"},
    "problem_type": "regression",
}


@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-config")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="valid_org/test-config-org")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="test-dynamic-config")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.push_to_hub("test-config", token=self._token)

        new_config = BertConfig.from_pretrained(f"{USER}/test-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-config")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir, repo_id="test-config", push_to_hub=True, token=self._token)

        new_config = BertConfig.from_pretrained(f"{USER}/test-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.push_to_hub("valid_org/test-config-org", token=self._token)

        new_config = BertConfig.from_pretrained("valid_org/test-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-config-org")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir, repo_id="valid_org/test-config-org", push_to_hub=True, token=self._token)

        new_config = BertConfig.from_pretrained("valid_org/test-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

    def test_push_to_hub_dynamic_config(self):
        CustomConfig.register_for_auto_class()
        config = CustomConfig(attribute=42)

        config.push_to_hub("test-dynamic-config", token=self._token)

        # This has added the proper auto_map field to the config
        self.assertDictEqual(config.auto_map, {"AutoConfig": "custom_configuration.CustomConfig"})

        new_config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config", trust_remote_code=True)
        # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
        self.assertEqual(new_config.__class__.__name__, "CustomConfig")
        self.assertEqual(new_config.attribute, 42)


class ConfigTestUtils(unittest.TestCase):
    def test_config_from_string(self):
        c = GPT2Config()

        # attempt to modify each of int/float/bool/str config records and verify they were updated
        n_embd = c.n_embd + 1  # int
        resid_pdrop = c.resid_pdrop + 1.0  # float
        scale_attn_weights = not c.scale_attn_weights  # bool
        summary_type = c.summary_type + "foo"  # str
        c.update_from_string(
            f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}"
        )
        self.assertEqual(n_embd, c.n_embd, "mismatch for key: n_embd")
        self.assertEqual(resid_pdrop, c.resid_pdrop, "mismatch for key: resid_pdrop")
        self.assertEqual(scale_attn_weights, c.scale_attn_weights, "mismatch for key: scale_attn_weights")
        self.assertEqual(summary_type, c.summary_type, "mismatch for key: summary_type")

    def test_config_common_kwargs_is_complete(self):
        base_config = PretrainedConfig()
        missing_keys = [key for key in base_config.__dict__ if key not in config_common_kwargs]
        # If this part of the test fails, you have arguments to addin config_common_kwargs above.
        self.assertListEqual(
            missing_keys,
            [
                "is_encoder_decoder",
                "_name_or_path",
                "_commit_hash",
                "_attn_implementation_internal",
                "transformers_version",
            ],
        )
        keys_with_defaults = [key for key, value in config_common_kwargs.items() if value == getattr(base_config, key)]
        if len(keys_with_defaults) > 0:
            raise ValueError(
                "The following keys are set with the default values in"
                " `test_configuration_common.config_common_kwargs` pick another value for them:"
                f" {', '.join(keys_with_defaults)}."
            )

    def test_nested_config_load_from_dict(self):
        config = AutoConfig.from_pretrained(
            "hf-internal-testing/tiny-random-CLIPModel", text_config={"num_hidden_layers": 2}
        )
        self.assertNotIsInstance(config.text_config, dict)
        self.assertEqual(config.text_config.__class__.__name__, "CLIPTextConfig")

    def test_from_pretrained_subfolder(self):
        with self.assertRaises(OSError):
            # config is in subfolder, the following should not work without specifying the subfolder
            _ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder")

        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder", subfolder="bert")

        self.assertIsNotNone(config)

    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        _ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
            _ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

    def test_local_versioning(self):
        configuration = AutoConfig.from_pretrained("google-bert/bert-base-cased")
        configuration.configuration_files = ["config.4.0.0.json"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            configuration.save_pretrained(tmp_dir)
            configuration.hidden_size = 2
            json.dump(configuration.to_dict(), open(os.path.join(tmp_dir, "config.4.0.0.json"), "w"))

            # This should pick the new configuration file as the version of Transformers is > 4.0.0
            new_configuration = AutoConfig.from_pretrained(tmp_dir)
            self.assertEqual(new_configuration.hidden_size, 2)

            # Will need to be adjusted if we reach v42 and this test is still here.
            # Should pick the old configuration file as the version of Transformers is < 4.42.0
            configuration.configuration_files = ["config.42.0.0.json"]
            configuration.hidden_size = 768
            configuration.save_pretrained(tmp_dir)
            shutil.move(os.path.join(tmp_dir, "config.4.0.0.json"), os.path.join(tmp_dir, "config.42.0.0.json"))
            new_configuration = AutoConfig.from_pretrained(tmp_dir)
            self.assertEqual(new_configuration.hidden_size, 768)

    def test_repo_versioning_before(self):
        # This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
        repo = "hf-internal-testing/test-two-configs"

        import transformers as new_transformers

        new_transformers.configuration_utils.__version__ = "v4.0.0"
        new_configuration, kwargs = new_transformers.models.auto.AutoConfig.from_pretrained(
            repo, return_unused_kwargs=True
        )
        self.assertEqual(new_configuration.hidden_size, 2)
        # This checks `_configuration_file` ia not kept in the kwargs by mistake.
        self.assertDictEqual(kwargs, {})

        # Testing an older version by monkey-patching the version in the module it's used.
        import transformers as old_transformers

        old_transformers.configuration_utils.__version__ = "v3.0.0"
        old_configuration = old_transformers.models.auto.AutoConfig.from_pretrained(repo)
        self.assertEqual(old_configuration.hidden_size, 768)

    def test_saving_config_with_custom_generation_kwargs_raises_warning(self):
        config = BertConfig(min_length=3)  # `min_length = 3` is a non-default generation kwarg
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertLogs("transformers.configuration_utils", level="WARNING") as logs:
                config.save_pretrained(tmp_dir)
            self.assertEqual(len(logs.output), 1)
            self.assertIn("min_length", logs.output[0])

    def test_has_non_default_generation_parameters(self):
        config = BertConfig()
        self.assertFalse(config._has_non_default_generation_parameters())
        config = BertConfig(min_length=3)
        self.assertTrue(config._has_non_default_generation_parameters())
        config = BertConfig(min_length=0)  # `min_length = 0` is a default generation kwarg
        self.assertFalse(config._has_non_default_generation_parameters())