Spaces:
Runtime error
Runtime error
File size: 56,214 Bytes
b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import io
import itertools
import json
import os
import unittest
from copy import deepcopy
from functools import partial
import datasets
from parameterized import parameterized
import tests.trainer.test_trainer
import transformers
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
from transformers.integrations.deepspeed import (
HfDeepSpeedConfig,
is_deepspeed_available,
unset_hf_deepspeed_config,
)
from transformers.testing_utils import (
CaptureLogger,
CaptureStd,
CaptureStderr,
LoggingLevel,
TestCasePlus,
backend_device_count,
execute_subprocess_async,
mockenv_context,
require_deepspeed,
require_optuna,
require_torch_accelerator,
require_torch_multi_accelerator,
slow,
torch_device,
)
from transformers.trainer_utils import get_last_checkpoint, set_seed
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device
if is_torch_available():
import torch
from tests.trainer.test_trainer import ( # noqa
RegressionModelConfig,
RegressionPreTrainedModel,
)
# hack to restore original logging level pre #21700
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")
set_seed(42)
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
T5_SMALL = "google-t5/t5-small"
T5_TINY = "patrickvonplaten/t5-tiny-random"
GPT2_TINY = "sshleifer/tiny-gpt2"
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
def load_json(path):
with open(path) as f:
return json.load(f)
def get_master_port(real_launcher=False):
"""
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
the issue is that once the port is tied it can't be used anywhere else outside of this process,
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
able to run both emulated launcher and normal launcher tests we need 2 distinct ports.
This function will give the right port in the right context. For real launcher it'll give the
base port, for emulated launcher it'll give the base port + 1. In both cases a string is
returned.
Args:
`real_launcher`: whether a real launcher is going to be used, or the emulated one
"""
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
if not real_launcher:
master_port_base = str(int(master_port_base) + 1)
return master_port_base
def require_deepspeed_aio(test_case):
"""
Decorator marking a test that requires deepspeed aio (nvme)
"""
if not is_deepspeed_available():
return unittest.skip("test requires deepspeed")(test_case)
import deepspeed
from deepspeed.ops.aio import AsyncIOBuilder
if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
return unittest.skip("test requires deepspeed async-io")(test_case)
else:
return test_case
if is_deepspeed_available():
from deepspeed.utils import logger as deepspeed_logger # noqa
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled # noqa
def get_launcher(distributed=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
master_port = get_master_port(real_launcher=True)
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
ZERO2 = "zero2"
ZERO3 = "zero3"
FP16 = "fp16"
BF16 = "bf16"
HF_OPTIM = "hf_optim"
HF_SCHEDULER = "hf_scheduler"
DS_OPTIM = "ds_optim"
DS_SCHEDULER = "ds_scheduler"
optims = [HF_OPTIM, DS_OPTIM]
schedulers = [HF_SCHEDULER, DS_SCHEDULER]
stages = [ZERO2, ZERO3]
if is_torch_bf16_available_on_device(torch_device):
dtypes = [FP16, BF16]
else:
dtypes = [FP16]
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers))
@require_deepspeed
@require_torch_accelerator
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
"""
Testing non-Trainer DeepSpeed integration
"""
def setUp(self):
super().setUp()
master_port = get_master_port(real_launcher=False)
self.dist_env_1_gpu = {
"MASTER_ADDR": "localhost",
"MASTER_PORT": master_port,
"RANK": "0",
"LOCAL_RANK": "0",
"WORLD_SIZE": "1",
}
def tearDown(self):
super().tearDown()
# reset the ds config global so that tests state doesn't leak
unset_hf_deepspeed_config()
def test_init_zero3_fp16(self):
# test that zero.Init() works correctly under zero3/fp16
ds_config = {
"train_batch_size": 1,
"zero_optimization": {
"stage": 3,
},
}
dschf = HfDeepSpeedConfig(ds_config)
self.assertTrue(dschf.is_zero3())
self.assertTrue(is_deepspeed_zero3_enabled())
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
AutoModel.from_pretrained(T5_TINY)
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
# now remove zero optimization
del ds_config["zero_optimization"]
dschf = HfDeepSpeedConfig(ds_config)
self.assertFalse(dschf.is_zero3())
self.assertFalse(is_deepspeed_zero3_enabled())
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
AutoModel.from_pretrained(T5_TINY)
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)
def test_init_zero3_missing_params(self):
# test that zero.Init() for missing parameters works correctly under zero3
import deepspeed
import torch
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel
class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config)
self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True)
def forward(self, *args, **kwargs):
transformer_outputs = self.transformer(*args, **kwargs)
hidden_states = transformer_outputs[0]
return self.new_head(hidden_states).float()
def _init_weights(self, module):
super()._init_weights(module)
if module is self.new_head:
self.new_head.weight.data.fill_(-100.0)
self.new_head.bias.data.fill_(+100.0)
ds_config = {
"train_batch_size": 1,
"zero_optimization": {
"stage": 3,
},
}
dschf = HfDeepSpeedConfig(ds_config)
self.assertTrue(dschf.is_zero3())
self.assertTrue(is_deepspeed_zero3_enabled())
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]):
self.assertTrue(
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
)
self.assertTrue(
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
)
# now remove zero optimization
del ds_config["zero_optimization"]
dschf = HfDeepSpeedConfig(ds_config)
self.assertFalse(dschf.is_zero3())
self.assertFalse(is_deepspeed_zero3_enabled())
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
self.assertTrue(
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
)
self.assertTrue(
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
)
def test_arange_bf16(self):
# Tests that configuring DeepSpeed with 16 bits does not cause float `torch.arange()` tensors to be cast down.
# NOTE -- this assumes that the function calls have the following downcast-preventing pattern, i.e.
# `torch.arange(...,dtype=torch.int64)` followed by a cast like `.to(torch.float32)`. 🚨 If this pattern is
# NOT applied (e.g. `torch.arange(...,dtype=torch.float32)` is used), DeepSpeed can automatically cast it down
# at init time. See https://github.com/huggingface/transformers/issues/28685 for more info.
ds_config = {
"train_batch_size": 1,
"zero_optimization": {
"stage": 3,
},
"bf16": {"enabled": True},
}
dschf = HfDeepSpeedConfig(ds_config)
self.assertTrue(dschf.is_zero3())
self.assertTrue(is_deepspeed_zero3_enabled())
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
model = AutoModel.from_pretrained(GPTJ_TINY)
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
# The model weights are in BF16 as per deepspeed config
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
good_deepspeed_sin_cos = model.h[0].attn.embed_positions
# Monkeypatches the function that creates RoPE embeddings using the INCORRECT torch.arange() pattern, and
# then recreates the model
def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
# Incorrect pattern here: torch.arange has dtype=torch.float32 as its argument, and it will automatically
# converted to BF16 by DeepSpeed
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq)
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions
with LoggingLevel(logging.INFO):
with mockenv_context(**self.dist_env_1_gpu):
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
model = AutoModel.from_pretrained(GPTJ_TINY)
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
bad_deepspeed_sin_cos = model.h[0].attn.embed_positions
# Compares the two values: the two sets of values are different, and the correct one matches the torch
# (i.e. outside DeepSpeed) version.
good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions(
model.config.max_position_embeddings, model.config.rotary_dim
)
self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos))
self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu()))
# Finally, we can see that the incorrect pattern is okay on vanilla torch, demostrating that this issue is
# exclusive to DeepSpeed
bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions(
model.config.max_position_embeddings, model.config.rotary_dim
)
self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos))
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
def setUp(self):
super().setUp()
args = TrainingArguments(".")
self.n_epochs = args.num_train_epochs
self.batch_size = args.train_batch_size
master_port = get_master_port(real_launcher=False)
self.dist_env_1_gpu = {
"MASTER_ADDR": "localhost",
"MASTER_PORT": master_port,
"RANK": "0",
"LOCAL_RANK": "0",
"WORLD_SIZE": "1",
}
self.ds_config_file = {
"zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
"zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
}
# use self.get_config_dict(stage) to use these to ensure the original is not modified
with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
config_zero2 = json.load(f)
with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
config_zero3 = json.load(f)
# The following setting slows things down, so don't enable it by default unless needed by a test.
# It's in the file as a demo for users since we want everything to work out of the box even if slower.
config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False
self.ds_config_dict = {
"zero2": config_zero2,
"zero3": config_zero3,
}
def tearDown(self):
super().tearDown()
# reset the ds config global so that tests state doesn't leak
unset_hf_deepspeed_config()
def get_config_dict(self, stage):
# As some tests modify the dict, always make a copy
return deepcopy(self.ds_config_dict[stage])
@require_deepspeed
@require_torch_accelerator
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
"""
This class is for testing directly via get_regression_trainer
It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
which we can re-use here.
Important: this class' setup can only work with a single gpu because it runs within the current
pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.
Note: if any of the tests of this class get run there will be at least one gpu occupied by them
until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
won't be released until this pytest worker exits.
This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
is not a bug.
"""
# --- These tests are enough to run on one of zero stages --- #
def test_hf_ds_config_mismatch(self):
ds_config = self.get_config_dict(ZERO2)
# Purposefully configure these values to mismatch TrainingArguments values.
# This currently doesn't cover all keys (but it could)
per_device_train_batch_size = 2
ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2
ds_config["train_batch_size"] = 1000
gradient_accumulation_steps = 2
ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2
max_grad_norm = 1.0
ds_config["gradient_clipping"] = max_grad_norm + 0.1
adam_beta1, adam_beta2 = 0.9, 0.99
ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]
fp16 = True
ds_config["fp16"]["enabled"] = not fp16
keys = [
"per_device_train_batch_size",
"train_batch_size",
"gradient_accumulation_steps",
"max_grad_norm",
"betas",
"fp16",
]
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(
local_rank=0,
fp16=fp16,
deepspeed=ds_config,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grad_norm=max_grad_norm,
adam_beta1=adam_beta1,
adam_beta2=adam_beta2,
)
with self.assertRaises(Exception) as context:
trainer.train()
for key in keys:
self.assertTrue(
key in str(context.exception),
f"{key} is not in the exception message:\n{context.exception}",
)
# Test various combos
# 1. DS scheduler + DS optimizer: this is already tested by most other tests
# 2. HF scheduler + HF optimizer:
# 3. DS scheduler + HF optimizer:
# 4. HF scheduler + DS optimizer:
def test_hf_scheduler_hf_optimizer(self):
a = 0
with mockenv_context(**self.dist_env_1_gpu):
ds_config_zero2_dict = self.get_config_dict(ZERO2)
del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer
del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
trainer.train()
new_a = trainer.model.a.item()
self.assertNotEqual(new_a, a)
def test_ds_scheduler_hf_optimizer(self):
a = 0
with mockenv_context(**self.dist_env_1_gpu):
ds_config_zero2_dict = self.get_config_dict(ZERO2)
del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
trainer.train()
new_a = trainer.model.a.item()
self.assertNotEqual(new_a, a)
def test_hf_scheduler_ds_optimizer(self):
a = 0
with mockenv_context(**self.dist_env_1_gpu):
ds_config_zero2_dict = self.get_config_dict(ZERO2)
del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
trainer.train()
new_a = trainer.model.a.item()
self.assertNotEqual(new_a, a)
@require_deepspeed_aio
def test_stage3_nvme_offload(self):
with mockenv_context(**self.dist_env_1_gpu):
# this actually doesn't have to be on NVMe, any storage will do since this test only
# runs a simple check that we can use some directory as if it were NVMe
nvme_path = self.get_auto_remove_tmp_dir()
nvme_config = {"device": "nvme", "nvme_path": nvme_path}
ds_config_zero3_dict = self.get_config_dict(ZERO3)
ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
with CaptureLogger(deepspeed_logger) as cl:
trainer.train()
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
@require_optuna
def test_hyperparameter_search(self):
with mockenv_context(**self.dist_env_1_gpu):
ds_config_zero3_dict = self.get_config_dict(ZERO3)
# hyperparameter_search requires model_init() to recreate the model for each trial
def model_init():
config = RegressionModelConfig(a=0, b=0, double_output=False)
model = RegressionPreTrainedModel(config)
return model
trainer = get_regression_trainer(
local_rank=0,
fp16=True,
model_init=model_init,
deepspeed=ds_config_zero3_dict,
)
n_trials = 3
with CaptureLogger(deepspeed_logger) as cl:
with CaptureStd() as cs:
trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")
# --- These tests need to run on both zero stages --- #
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_hf_optimizer_with_offload(self, stage, dtype):
# non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
ds_config_dict = self.get_config_dict(stage)
del ds_config_dict["optimizer"] # force default HF Trainer optimizer
# force cpu offload
ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam
with mockenv_context(**self.dist_env_1_gpu):
kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
kwargs[dtype] = True
trainer = get_regression_trainer(**kwargs)
with CaptureLogger(deepspeed_logger) as cl:
trainer.train()
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_fake_notebook_no_launcher(self, stage, dtype):
# this setup emulates a notebook where a launcher needs to be emulated by hand
# note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
# DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
# it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
# to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
with mockenv_context(**self.dist_env_1_gpu):
kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
kwargs[dtype] = True
trainer = get_regression_trainer(**kwargs)
with CaptureLogger(deepspeed_logger) as cl:
trainer.train()
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_early_get_last_lr(self, stage, dtype):
# with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
# not run for the first few dozen steps while loss scale is too large, and thus during
# that time `get_last_lr` will fail if called during that warm up stage,
#
# setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
# `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
with mockenv_context(**self.dist_env_1_gpu):
a = b = 0.0
kwargs = {
"a": a,
"b": b,
"local_rank": 0,
"train_len": 8,
"deepspeed": self.get_config_dict(stage),
"per_device_train_batch_size": 8,
"logging_steps": 1,
}
kwargs[dtype] = True
trainer = get_regression_trainer(**kwargs)
trainer.train()
post_train_a = trainer.model.a.item()
# XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
# broken but a different qualitative outcome - as if optimizer did run
# oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
# print(trainer.model.a.item())
# print(trainer.model.b.item())
# need to investigate at some point
if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
return
# it's enough that train didn't fail for this test, but we must check that
# optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
self.assertEqual(post_train_a, a)
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_gradient_accumulation(self, stage, dtype):
# this test measures that we get identical weights and similar loss with:
# 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
# 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
# since the 2nd should produce the effective batch of 1st, with the same results
#
# I can get an identical loss for a small train_len=32, plus the power of the initial
# dynamic loss scale value set to:
# "fp16.initial_scale_power": 1
# plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
# but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
# the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical
train_len = 64
a = b = 0.0
kwargs = {
"a": a,
"b": b,
"local_rank": 0,
"train_len": train_len,
"deepspeed": self.get_config_dict(stage),
}
kwargs[dtype] = True
with mockenv_context(**self.dist_env_1_gpu):
no_grad_accum_trainer = get_regression_trainer(
**kwargs,
per_device_train_batch_size=16,
gradient_accumulation_steps=1,
)
no_grad_accum_result = no_grad_accum_trainer.train()
no_grad_accum_loss = no_grad_accum_result.training_loss
no_grad_accum_a = no_grad_accum_trainer.model.a.item()
no_grad_accum_b = no_grad_accum_trainer.model.b.item()
# make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
self.assertNotEqual(no_grad_accum_a, a)
with mockenv_context(**self.dist_env_1_gpu):
yes_grad_accum_trainer = get_regression_trainer(
**kwargs,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
)
yes_grad_accum_result = yes_grad_accum_trainer.train()
yes_grad_accum_loss = yes_grad_accum_result.training_loss
yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
self.assertNotEqual(yes_grad_accum_a, a)
# training with half the batch size but accumulation steps as 2 should give the same
# weights, but sometimes get a slight difference still of 1e-6
self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
# Relative difference. See the note above how to get identical loss on a small bs
self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3)
def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
# adapted from TrainerIntegrationCommon.check_saved_checkpoints
file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
if stage == ZERO2:
ds_file_list = ["mp_rank_00_model_states.pt"]
elif stage == ZERO3:
ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
else:
raise ValueError(f"unknown stage {stage}")
if dtype == "bf16":
ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
for step in range(freq, total, freq):
checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
# common files
for filename in file_list:
path = os.path.join(checkpoint, filename)
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
# ds files
ds_path = os.path.join(checkpoint, f"global_step{step}")
for filename in ds_file_list:
# filename = os.path.join(path, filename)
# print(filename)
path = os.path.join(ds_path, filename)
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_save_checkpoints(self, stage, dtype):
# adapted from TrainerIntegrationTest.test_save_checkpoints
freq = 5
output_dir = self.get_auto_remove_tmp_dir()
ds_config_dict = self.get_config_dict(stage)
if dtype == FP16:
ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step
# XXX:
if stage == ZERO3:
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
# save checkpoints
with mockenv_context(**self.dist_env_1_gpu):
kwargs = {
"output_dir": output_dir,
"save_steps": freq,
"deepspeed": ds_config_dict,
}
kwargs[dtype] = True
trainer = get_regression_trainer(**kwargs)
trainer.train()
total = int(self.n_epochs * 64 / self.batch_size)
self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_can_resume_training_errors(self, stage, dtype):
with mockenv_context(**self.dist_env_1_gpu):
ds_config_dict = self.get_config_dict(stage)
output_dir = self.get_auto_remove_tmp_dir()
kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
kwargs[dtype] = True
trainer = get_regression_trainer(**kwargs)
# 1. fail to find any checkpoint - due a fresh output_dir
with self.assertRaises(Exception) as context:
trainer.train(resume_from_checkpoint=True)
self.assertTrue(
"No valid checkpoint found in output directory" in str(context.exception),
f"got exception: {context.exception}",
)
# 2. fail to find a bogus checkpoint
with self.assertRaises(Exception) as context:
checkpoint = os.path.join(output_dir, "checkpoint-5")
trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
@parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func)
def test_can_resume_training_normal(self, stage, dtype, optim, scheduler):
# adapted from TrainerIntegrationTest.test_can_resume_training
# test normal resume for each stage separately, error-handling is tested in a different test
# ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and
# also has same losses for few steps but then slowly diverges. Need to figure it out.
if optim == HF_OPTIM and scheduler == HF_SCHEDULER:
return
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
ds_config_dict = self.get_config_dict(stage)
if dtype == FP16:
ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step
# XXX:
if stage == ZERO3:
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
if optim == HF_OPTIM:
del ds_config_dict["optimizer"]
if scheduler == HF_SCHEDULER:
del ds_config_dict["scheduler"]
kwargs = {
"output_dir": output_dir,
"train_len": 128,
"save_steps": 5,
"learning_rate": 0.1,
"deepspeed": ds_config_dict,
}
kwargs[dtype] = True
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(**kwargs)
trainer.train()
(a, b) = trainer.model.a.item(), trainer.model.b.item()
state = dataclasses.asdict(trainer.state)
checkpoint = os.path.join(output_dir, "checkpoint-5")
# Reinitialize trainer
trainer = get_regression_trainer(**kwargs)
trainer.train(resume_from_checkpoint=checkpoint)
(a1, b1) = trainer.model.a.item(), trainer.model.b.item()
state1 = dataclasses.asdict(trainer.state)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
self.check_trainer_state_are_the_same(state, state1)
# Now check with a later checkpoint that it also works when we span over one epoch
checkpoint = os.path.join(output_dir, "checkpoint-15")
# Reinitialize trainer and load model
trainer = get_regression_trainer(**kwargs)
trainer.train(resume_from_checkpoint=checkpoint)
(a1, b1) = trainer.model.a.item(), trainer.model.b.item()
state1 = dataclasses.asdict(trainer.state)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
self.check_trainer_state_are_the_same(state, state1)
# Finally, should be able to resume with the same trainer/same deepspeed engine instance
# XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
# trainer.train(resume_from_checkpoint=checkpoint)
# a workaround needs to be used that re-creates the deepspeed engine
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
# test that we can load fp32 weights directly from the zero checkpoint into the current model
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False)
ds_config_dict = self.get_config_dict(stage)
kwargs = {
"output_dir": output_dir,
"train_len": 4,
"per_device_train_batch_size": 4,
"num_train_epochs": 1,
"save_strategy": "steps",
"save_steps": 1,
"learning_rate": 0.1,
"deepspeed": ds_config_dict,
}
kwargs[dtype] = True
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(**kwargs)
trainer.train()
(a, b) = trainer.model.a.item(), trainer.model.b.item()
state = dataclasses.asdict(trainer.state)
checkpoint_dir = get_last_checkpoint(output_dir)
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
(a1, b1) = model.a.item(), model.b.item()
state1 = dataclasses.asdict(trainer.state)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
self.check_trainer_state_are_the_same(state, state1)
def test_config_object(self):
# test that we can switch from zero2 to zero3 in the same process for example
# test is_zero, etc.
output_dir = self.get_auto_remove_tmp_dir()
kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
ds_config_zero3_dict = self.get_config_dict(ZERO3)
ds_config_zero2_dict = self.get_config_dict(ZERO2)
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
self.assertTrue(is_deepspeed_zero3_enabled())
# test we can repeat that and with train this time
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
trainer.train()
self.assertTrue(is_deepspeed_zero3_enabled())
# test zero3 is disabled
trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
self.assertFalse(is_deepspeed_zero3_enabled())
# check config obj
config = deepspeed_config()
self.assertTrue(bool(config), "Deepspeed config should be accessible")
# with accelerate integration below line is additionally required for this test to pass
trainer.accelerator.state._reset_state()
del trainer
# now weakref should gc the global and we shouldn't get anything here
config = deepspeed_config()
self.assertFalse(is_deepspeed_zero3_enabled())
self.assertFalse(bool(config), "Deepspeed config should not be accessible")
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_load_best_model(self, stage, dtype):
# Test that forced deepspeed reinit doesn't break the model. the forced re-init after
# loading the best model in Trainer is there to workaround this bug in Deepspeed
# https://github.com/microsoft/DeepSpeed/issues/1612
#
# The test is derived from a repro script submitted in this Issue:
# https://github.com/huggingface/transformers/issues/17114
#
# One additional feature of this test is that we use a non-AdamW optimizer to test that
# deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
# correctly
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer # noqa
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False)
ds_config_dict = self.get_config_dict(stage)
del ds_config_dict["optimizer"] # will use HF Trainer optimizer
del ds_config_dict["scheduler"] # will use HF Trainer scheduler
ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam
# must use this setting to get the reload path exercised
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
with mockenv_context(**self.dist_env_1_gpu):
args_dict = {
"per_device_train_batch_size": 1,
"per_device_eval_batch_size": 1,
"gradient_accumulation_steps": 1,
"learning_rate": 1e-4,
"num_train_epochs": 1,
"do_train": True,
"do_eval": True,
"optim": "adafactor",
"eval_strategy": "steps",
"eval_steps": 1,
"save_strategy": "steps",
"save_steps": 1,
"load_best_model_at_end": True,
"max_steps": 1,
"deepspeed": ds_config_dict,
"report_to": "none",
}
training_args = TrainingArguments(output_dir, **args_dict)
tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
model = T5ForConditionalGeneration.from_pretrained(T5_TINY)
def _add_eos_to_examples(example):
example["input_text"] = f"question: {example['question']} context: {example['context']}"
example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
return example
def _convert_to_features(example_batch):
input_encodings = tokenizer.batch_encode_plus(
example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
)
target_encodings = tokenizer.batch_encode_plus(
example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
)
encodings = {
"input_ids": input_encodings["input_ids"],
"attention_mask": input_encodings["attention_mask"],
"labels": target_encodings["input_ids"],
}
return encodings
def get_dataset():
data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
data_files = {"train": data_file, "validation": data_file}
raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
valid_dataset = deepcopy(train_dataset)
return train_dataset, valid_dataset
train_dataset, eval_dataset = get_dataset()
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train() # crash 1 was here
trainer.evaluate() # crash 2 was here
@slow
@require_deepspeed
@require_torch_accelerator
class TestDeepSpeedWithLauncher(TestCasePlus):
"""This class is for testing via an external script - can do multiple gpus"""
# Tests to devise #
#
# 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
# the 2 gpus will generate prediction sequences that aren't of the same length - this is because
# we had to code a special feature to sync the gpus when the predicted sequences aren't of the
# same length. In general this will tested as a side-effect through a variety of other tests -
# it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
# long as we have a few full tests running on zero3 + predict_with_generate this should be
# mostly covered.
#
# but there are 5 variations on beam search in `generate`- with identical code branched with `if
# synced_gpus`
#
# 2. most tests should probably be run on both: zero2 and zero3 configs
#
@parameterized.expand(params, name_func=parameterized_custom_name_func)
@require_torch_multi_accelerator
def test_basic_distributed(self, stage, dtype):
self.run_and_check(stage=stage, dtype=dtype, distributed=True)
def test_do_eval_no_train(self):
# testing only zero3 since zero2 makes no sense with inference
self.run_and_check(
stage=ZERO3,
dtype=FP16,
eval_steps=1,
distributed=False,
do_train=False,
do_eval=True,
)
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_fp32_non_distributed(self, stage, dtype):
# real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
# therefore no quality checks, just basic completion checks are done
self.run_and_check(
stage=stage,
dtype=dtype,
model_name=T5_TINY,
distributed=False,
do_train=True,
do_eval=True,
quality_checks=False,
fp32=True,
)
@parameterized.expand(params, name_func=parameterized_custom_name_func)
@require_torch_multi_accelerator
def test_fp32_distributed(self, stage, dtype):
# real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
# therefore no quality checks, just basic completion checks are done
self.run_and_check(
stage=stage,
dtype=dtype,
model_name=T5_TINY,
distributed=True,
do_train=True,
do_eval=True,
quality_checks=False,
fp32=True,
)
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
# do normal training and then resume not from the deepspeed checkpoint but explicitly from
# the saved model dir
do_train = True
do_eval = False
kwargs = {
"stage": stage,
"dtype": dtype,
"eval_steps": 1,
"distributed": True,
"do_train": do_train,
"do_eval": do_eval,
}
# 1. normal training
output_dir = self.run_and_check(**kwargs)
# 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
# - i.e. the same path the model was saved to in step 1
output_dir = self.run_trainer(**kwargs, model_name=output_dir)
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)
@parameterized.expand(["bf16", "fp16", "fp32"])
@require_torch_multi_accelerator
def test_inference(self, dtype):
if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device):
self.skipTest("test requires bfloat16 hardware support")
# this is just inference, so no optimizer should be loaded
# it only works for z3 (makes no sense with z1-z2)
fp32 = True if dtype == "fp32" else False
self.run_and_check(
stage=ZERO3,
dtype=FP16,
model_name=T5_TINY,
distributed=True,
do_train=False,
do_eval=True,
quality_checks=False,
fp32=fp32,
)
def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
if do_train:
train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
self.assertIn("train_samples_per_second", train_metrics)
if quality_checks:
self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
if do_eval:
eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
self.assertIn("eval_bleu", eval_metrics)
if quality_checks:
self.assertGreater(eval_metrics["eval_bleu"], 1)
# XXX: need to do better validation beyond just that the run was successful
def run_and_check(
self,
stage,
dtype,
model_name: str = T5_SMALL,
eval_steps: int = 10,
distributed: bool = True,
do_train: bool = True,
do_eval: bool = True,
quality_checks: bool = True,
fp32: bool = False,
extra_args_str: str = None,
remove_args_str: str = None,
):
# we are doing quality testing so using a small real model
output_dir = self.run_trainer(
stage=stage,
dtype=dtype,
model_name=model_name,
eval_steps=eval_steps,
num_train_epochs=1,
do_train=do_train,
do_eval=do_eval,
distributed=distributed,
fp32=fp32,
extra_args_str=extra_args_str,
remove_args_str=remove_args_str,
)
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
return output_dir
def run_trainer(
self,
stage: str,
dtype: str,
model_name: str,
eval_steps: int = 10,
num_train_epochs: int = 1,
do_train: bool = False,
do_eval: bool = True,
distributed: bool = True,
fp32: bool = False,
extra_args_str: str = None,
remove_args_str: str = None,
):
max_len = 32
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--output_dir {output_dir}
--overwrite_output_dir
--max_source_length {max_len}
--max_target_length {max_len}
--val_max_target_length {max_len}
--warmup_steps 8
--predict_with_generate
--save_steps 0
--eval_steps {eval_steps}
--group_by_length
--label_smoothing_factor 0.1
--source_lang en
--target_lang ro
--report_to none
""".split()
args.extend(["--source_prefix", '"translate English to Romanian: "'])
if not fp32:
args.extend([f"--{dtype}"])
actions = 0
if do_train:
actions += 1
args.extend(
f"""
--do_train
--num_train_epochs {str(num_train_epochs)}
--max_train_samples 16
--per_device_train_batch_size 2
--learning_rate 3e-3
""".split()
)
if do_eval:
actions += 1
args.extend(
"""
--do_eval
--max_eval_samples 16
--per_device_eval_batch_size 2
""".split()
)
assert actions > 0, "need at least do_train or do_eval for the test to run"
if extra_args_str is not None:
args.extend(extra_args_str.split())
# currently only works for bool args
if remove_args_str is not None:
remove_args = remove_args_str.split()
args = [x for x in args if x not in remove_args]
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
launcher = get_launcher(distributed)
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
return output_dir
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_clm(self, stage, dtype):
# this test exercises model.resize_token_embeddings() which requires param gathering outside
# of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`
data_dir = self.tests_dir / "fixtures"
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_name_or_path {GPT2_TINY}
--train_file {data_dir}/sample_text.txt
--validation_file {data_dir}/sample_text.txt
--output_dir {output_dir}
--overwrite_output_dir
--do_train
--do_eval
--max_train_samples 16
--max_eval_samples 16
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--num_train_epochs 1
--warmup_steps 8
--block_size 64
--report_to none
""".split()
args.extend([f"--{dtype}"])
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
launcher = get_launcher(distributed=True)
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
def test_clm_from_config_zero3_fp16(self):
# this test exercises AutoModel.from_config(config) - to ensure zero.Init is called
data_dir = self.tests_dir / "fixtures"
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_type gpt2
--tokenizer_name {GPT2_TINY}
--train_file {data_dir}/sample_text.txt
--validation_file {data_dir}/sample_text.txt
--output_dir {output_dir}
--overwrite_output_dir
--do_train
--max_train_samples 4
--per_device_train_batch_size 2
--num_train_epochs 1
--warmup_steps 8
--block_size 8
--fp16
--report_to none
""".split()
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
launcher = get_launcher(distributed=True)
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
with CaptureStderr() as cs:
execute_subprocess_async(cmd, env=self.get_env())
self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)
|