File size: 56,214 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import io
import itertools
import json
import os
import unittest
from copy import deepcopy
from functools import partial

import datasets
from parameterized import parameterized

import tests.trainer.test_trainer
import transformers
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
from transformers.integrations.deepspeed import (
    HfDeepSpeedConfig,
    is_deepspeed_available,
    unset_hf_deepspeed_config,
)
from transformers.testing_utils import (
    CaptureLogger,
    CaptureStd,
    CaptureStderr,
    LoggingLevel,
    TestCasePlus,
    backend_device_count,
    execute_subprocess_async,
    mockenv_context,
    require_deepspeed,
    require_optuna,
    require_torch_accelerator,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
from transformers.trainer_utils import get_last_checkpoint, set_seed
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device


if is_torch_available():
    import torch

    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )

    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")


set_seed(42)

# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

T5_SMALL = "google-t5/t5-small"
T5_TINY = "patrickvonplaten/t5-tiny-random"
GPT2_TINY = "sshleifer/tiny-gpt2"
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"


def load_json(path):
    with open(path) as f:
        return json.load(f)


def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
    from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa


def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
    master_port = get_master_port(real_launcher=True)
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()


ZERO2 = "zero2"
ZERO3 = "zero3"

FP16 = "fp16"
BF16 = "bf16"

HF_OPTIM = "hf_optim"
HF_SCHEDULER = "hf_scheduler"
DS_OPTIM = "ds_optim"
DS_SCHEDULER = "ds_scheduler"

optims = [HF_OPTIM, DS_OPTIM]
schedulers = [HF_SCHEDULER, DS_SCHEDULER]

stages = [ZERO2, ZERO3]
if is_torch_bf16_available_on_device(torch_device):
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))

params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers))


@require_deepspeed
@require_torch_accelerator
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

        master_port = get_master_port(real_launcher=False)
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }

    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)

    def test_init_zero3_missing_params(self):
        # test that zero.Init() for missing parameters works correctly under zero3
        import deepspeed
        import torch

        from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel

        class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel):
            def __init__(self, config):
                super().__init__(config)
                self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config)
                self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True)

            def forward(self, *args, **kwargs):
                transformer_outputs = self.transformer(*args, **kwargs)
                hidden_states = transformer_outputs[0]
                return self.new_head(hidden_states).float()

            def _init_weights(self, module):
                super()._init_weights(module)
                if module is self.new_head:
                    self.new_head.weight.data.fill_(-100.0)
                    self.new_head.bias.data.fill_(+100.0)

        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]):
            self.assertTrue(
                torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
            )
            self.assertTrue(
                torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
            )

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        self.assertTrue(
            torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
        )
        self.assertTrue(
            torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
        )

    def test_arange_bf16(self):
        # Tests that configuring DeepSpeed with 16 bits does not cause float `torch.arange()` tensors to be cast down.
        # NOTE -- this assumes that the function calls have the following downcast-preventing pattern, i.e.
        # `torch.arange(...,dtype=torch.int64)` followed by a cast like `.to(torch.float32)`. 🚨 If this pattern is
        # NOT applied (e.g. `torch.arange(...,dtype=torch.float32)` is used), DeepSpeed can automatically cast it down
        # at init time. See https://github.com/huggingface/transformers/issues/28685 for more info.

        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
            "bf16": {"enabled": True},
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = AutoModel.from_pretrained(GPTJ_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # The model weights are in BF16 as per deepspeed config
        self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
        good_deepspeed_sin_cos = model.h[0].attn.embed_positions

        # Monkeypatches the function that creates RoPE embeddings using the INCORRECT torch.arange() pattern, and
        # then recreates the model
        def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
            inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
            # Incorrect pattern here: torch.arange has dtype=torch.float32 as its argument, and it will automatically
            # converted to BF16 by DeepSpeed
            sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq)
            return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)

        good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
        transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = AutoModel.from_pretrained(GPTJ_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
        bad_deepspeed_sin_cos = model.h[0].attn.embed_positions

        # Compares the two values: the two sets of values are different, and the correct one matches the torch
        # (i.e. outside DeepSpeed) version.
        good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions(
            model.config.max_position_embeddings, model.config.rotary_dim
        )
        self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos))
        self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu()))

        # Finally, we can see that the incorrect pattern is okay on vanilla torch, demostrating that this issue is
        # exclusive to DeepSpeed
        bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions(
            model.config.max_position_embeddings, model.config.rotary_dim
        )
        self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos))


class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
    def setUp(self):
        super().setUp()

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

        master_port = get_master_port(real_launcher=False)
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }

        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
            config_zero2 = json.load(f)
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
            config_zero3 = json.load(f)
            # The following setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }

    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])


@require_deepspeed
@require_torch_accelerator
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

    # --- These tests are enough to run on one of zero stages --- #

    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    @require_deepspeed_aio
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
            with CaptureLogger(deepspeed_logger) as cl:
                trainer.train()
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")

    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
        with mockenv_context(**self.dist_env_1_gpu):
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
            with CaptureLogger(deepspeed_logger) as cl:
                trainer.train()
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

            with CaptureLogger(deepspeed_logger) as cl:
                trainer.train()
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

            trainer.train()
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
                return

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
            self.assertEqual(post_train_a, a)

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
        kwargs[dtype] = True

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                **kwargs,
                per_device_train_batch_size=16,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                **kwargs,
                per_device_train_batch_size=4,
                gradient_accumulation_steps=4,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)

        # Relative difference. See the note above how to get identical loss on a small bs
        self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3)

    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints
        file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
            # common files
            for filename in file_list:
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

        freq = 5
        output_dir = self.get_auto_remove_tmp_dir()
        ds_config_dict = self.get_config_dict(stage)
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )

            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")

    @parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype, optim, scheduler):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test

        # ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and
        # also has same losses for few steps but then slowly diverges. Need to figure it out.
        if optim == HF_OPTIM and scheduler == HF_SCHEDULER:
            return

        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
        ds_config_dict = self.get_config_dict(stage)
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

        if optim == HF_OPTIM:
            del ds_config_dict["optimizer"]

        if scheduler == HF_SCHEDULER:
            del ds_config_dict["scheduler"]

        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
        kwargs[dtype] = True

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
        kwargs[dtype] = True

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}

        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            # with accelerate integration below line is additionally required for this test to pass
            trainer.accelerator.state._reset_state()
            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

        with mockenv_context(**self.dist_env_1_gpu):
            args_dict = {
                "per_device_train_batch_size": 1,
                "per_device_eval_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "eval_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
                "report_to": "none",
            }

            training_args = TrainingArguments(output_dir, **args_dict)
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
                data_files = {"train": data_file, "validation": data_file}
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here


@slow
@require_deepspeed
@require_torch_accelerator
class TestDeepSpeedWithLauncher(TestCasePlus):
    """This class is for testing via an external script - can do multiple gpus"""

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    @require_torch_multi_accelerator
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)

    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
        self.run_and_check(
            stage=ZERO3,
            dtype=FP16,
            eval_steps=1,
            distributed=False,
            do_train=False,
            do_eval=True,
        )

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            dtype=dtype,
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp32=True,
        )

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    @require_torch_multi_accelerator
    def test_fp32_distributed(self, stage, dtype):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            dtype=dtype,
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp32=True,
        )

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

    @parameterized.expand(["bf16", "fp16", "fp32"])
    @require_torch_multi_accelerator
    def test_inference(self, dtype):
        if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest("test requires bfloat16 hardware support")

        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
        fp32 = True if dtype == "fp32" else False
        self.run_and_check(
            stage=ZERO3,
            dtype=FP16,
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
            fp32=fp32,
        )

    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)

    # XXX: need to do better validation beyond just that the run was successful
    def run_and_check(
        self,
        stage,
        dtype,
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
        fp32: bool = False,
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
        # we are doing quality testing so using a small real model
        output_dir = self.run_trainer(
            stage=stage,
            dtype=dtype,
            model_name=model_name,
            eval_steps=eval_steps,
            num_train_epochs=1,
            do_train=do_train,
            do_eval=do_eval,
            distributed=distributed,
            fp32=fp32,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)

        return output_dir

    def run_trainer(
        self,
        stage: str,
        dtype: str,
        model_name: str,
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
        distributed: bool = True,
        fp32: bool = False,
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
        max_len = 32
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
            --save_steps 0
            --eval_steps {eval_steps}
            --group_by_length
            --label_smoothing_factor 0.1
            --source_lang en
            --target_lang ro
            --report_to none
        """.split()
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

        if not fp32:
            args.extend([f"--{dtype}"])

        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --max_train_samples 16
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
            --max_eval_samples 16
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

        # currently only works for bool args
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
        launcher = get_launcher(distributed)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {GPT2_TINY}
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 64
            --report_to none
            """.split()

        args.extend([f"--{dtype}"])

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
        launcher = get_launcher(distributed=True)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

    def test_clm_from_config_zero3_fp16(self):
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
            --tokenizer_name {GPT2_TINY}
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
        launcher = get_launcher(distributed=True)

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)